

Protogate, Inc
12225 World T
San Diego, CA

June 2002
Preliminary
June 11, 2002
PROTOGATE.
rade Drive, Suite R
 92128

Freeway™

OS/Protogate
Programmer’s Guide

DC 900-2008A

Protogate, Inc.
12225 World Trade Drive, Suite R
San Diego, CA 92128
(858) 451-0865

Freeway OS/Protogate Programmer’s Guide
© 2002 Protogate, Inc. All rights reserved
Printed in the United States of America

This document can change without notice. Protogate, Inc. accepts no liability for any errors this
document might contain.

Ethernet is a trademark of Xerox Corporation.
Freeway Embedded is a trademark of Simpact, Inc.
VMEbus is a trademark of Motorola Incorporated.
VxWorks is a trademark of Wind River Systems Incorporated.

Contents
Preface 11

1 Overview 15

1.1 Freeway Overview . 15

1.2 OS/Protogate Overview . 18

2 Principles of Operation 21

2.1 System Scheduling . 21

2.2 Tasks . 22

2.3 Queues . 22

2.3.1 Singly Linked Queues . 22

2.3.2 Doubly Linked Queues . 23

2.3.3 Exchange Queues . 23

2.3.4 Queue Ordering . 24

2.4 Memory Allocation . 24

2.4.1 Stacks . 24

2.4.2 Partitions . 25

2.5 Timer Services . 25

2.5.1 Timer Interrupt Service Routine (ISR) 26

2.5.2 Timer Task . 26

2.5.3 Alarms. 27

2.6 Resource Management . 28

3 System Calls 31

3.1 Task-Related Calls . 32

3.1.1 Create a Task (ssss____ttttccccrrrreeeeaaaatttt) . 34

3.1.2 Delete Calling Task (ssss____ttttddddeeeelllleeeetttt) . 36
DC 900-2008A 3

Freeway OS/Protogate Programmer’s Guide

3.1.3 Disable Task Rescheduling (ssss____lllloooocccckkkk) 37

3.1.4 Enable Task Rescheduling (ssss____uuuulllloooocccckkkk) 38

3.1.5 Suspend Calling Task (ssss____ssssuuuusssspppp) . 39

3.1.6 Resume a Task (ssss____rrrreeeessssuuuummmm) . 41

3.2 Queue-Related Calls . 42

3.2.1 Create a Queue (ssss____qqqqccccrrrreeeeaaaatttt) . 43

3.2.2 Delete a Queue (ssss____qqqqddddeeeelllleeeetttt) . 45

3.2.3 Post a Message to a Queue (ssss____ppppoooosssstttt) 46

3.2.4 Post a Message and Resume Queue Owner (ssss____ppppoooossssttttrrrr). 48

3.2.5 Accept a Message from a Queue (ssss____aaaaccccccccpppptttt) 50

3.3 Resource-Related Calls . 51

3.3.1 Create a Resource (ssss____rrrrccccrrrreeeeaaaatttt). 52

3.3.2 Delete a Resource (ssss____rrrrddddeeeelllleeeetttt). 54

3.3.3 Request a Resource (ssss____rrrrrrrreeeeqqqq) . 55

3.3.4 Cancel a Resource Request (ssss____rrrrccccaaaannnn) 57

3.3.5 Release a Resource (ssss____rrrrrrrreeeellll) . 59

3.4 Partition-Related Calls . 61

3.4.1 Create a Partition (ssss____ppppccccrrrreeeeaaaatttt) . 62

3.4.2 Delete a Partition (ssss____ppppddddeeeelllleeeetttt) . 64

3.4.3 Request a Buffer (ssss____bbbbrrrreeeeqqqq). 65

3.4.4 Release a Buffer (ssss____bbbbrrrreeeellll) . 66

3.5 Alarm-Related Calls . 67

3.5.1 Create an Alarm (ssss____aaaaccccrrrreeeeaaaatttt) . 68

3.5.2 Delete an Alarm (ssss____aaaaddddeeeelllleeeetttt) . 71

3.5.3 Set an Alarm (ssss____aaaasssseeeetttt) . 72

3.5.4 Cancel an Alarm (ssss____aaaaccccaaaannnn) . 74

3.6 Miscellaneous Calls . 75

3.6.1 Initialize OS (ssss____oooossssiiiinnnniiiitttt). 76

3.6.2 Get System Address Table (ssss____ggggeeeettttssssaaaatttt) 77

3.6.3 Return from ISR (ssss____iiiirrrreeeetttt) . 78

3.6.4 Set Interrupt Level (ssss____iiiisssseeeetttt) . 79

4 System Data Structures 81

4.1 Task Control Block (TCB) . 81

4.2 Queue Control Block (QCB) . 83

4.3 Resource Control Block (RCB) . 84
4 DC 900-2008A

Contents

4.4 Partition Control Block (PCB) . 85

4.5 Alarm Control Block (ACB) . 86

4.6 Standard Alarm Queue . 88

4.7 Special Alarm Queue . 89

4.8 Dispatch Queues. 90

4.9 Configuration Table . 91

4.10 Task Initialization Structure (TIS) . 94

4.11 Event Control Block (ECB) . 95

4.12 System Buffer Header (SBH) . 97

4.13 Resource Carrier Message . 100

4.14 Stack Format. 102

4.15 Global System Table (GST) . 103

A Debugging Aids 105

A.1 Global System Table . 105

A.1.1 Panic Codes . 106

A.2 System Variables . 115

A.2.1 Pointers to Control Structures . 115

A.2.2 Alarm Queues . 116

A.2.3 Task Execution Variables . 116

B Data Structure Field Offsets 117

C System Call Summaries 123

D Task Scheduling Examples 127

Glossary of Acronyms 131

Index 133
DC 900-2008A 5

Freeway OS/Protogate Programmer’s Guide
6 DC 900-2008A

List of Figures
Figure 1–1: Freeway Configuration . 16
DC 900-2008A 7

Freeway OS/Protogate Programmer’s Guide
8 DC 900-2008A

List of Tables
Table A–1: System Errors . 106

Table A–2: Control Structures . 115

Table A–3: Alarm Queues . 116

Table A–4: Task Execution Variables . 116

Table B–1: Task Control Block (TCB) . 118

Table B–2: Queue Control Block (QCB) . 118

Table B–3: Resource Control Block (RCB) . 118

Table B–4: Partition Control Block (PCB) . 119

Table B–5: Alarm Control Block (ACB) . 119

Table B–6: Standard Alarm Queue . 119

Table B–7: Special Alarm Queue . 120

Table B–8: Dispatch Queues . 120

Table B–9: Configuration Table . 120

Table B–10: Task Initialization Structure (TIS) 121

Table B–11: Event Control Block (ECB) . 121

Table B–12: System Buffer Header (SBH) . 121

Table B–13: Resource Carrier Message. 122

Table B–14: Global System Table (GST) . 122

Table C–1: C Interface System Call Summary 124

Table C–2: Assembly Interface System Call Summary 125
DC 900-2008A 9

Freeway OS/Protogate Programmer’s Guide
10 DC 900-2008A

Preface
Purpose of Document

This document provides a complete description of the programmer’s interface to

OS/Protogate, Protogate’s real-time operating system kernel for the Motorola Cold-

Fire® family of processors.

Intended Audience

This document should be read by programmers who are developing code that will be

downloaded to a Protogate product and execute in the OS/Protogate environment. You

should be familiar with general operating-system concepts and with the fundamentals

of developing programs in a real-time environment. Some familiarity with the C pro-

gramming language is helpful because this document presents the system-call interface

and data-structure definitions in C format.

Required Equipment

You will need OS/Protogate in executable form and a Freeway product based on Motor-

ola’s ColdFire® family of processors. The software you develop and intend to execute in

Protogate’s OS/Protogate environment must be assembled and linked into a file execut-

able on the Motorola chip. You must also be able to download the software to the Pro-

togate product.
DC 900-2008A 11

Freeway OS/Protogate Programmer’s Guide

Organization of Document

Chapter 1 provides an overview of Freeway and OS/Protogate.

Chapter 2 introduces the components of OS/Protogate and provides a general descrip-

tion of its system services.

Chapter 3 contains the OS/Protogate system calls. Each section describes a system call

in detail and provides input and output parameters for C and assembly language inter-

faces.

Chapter 4 describes the system data structures used internally by OS/Protogate and

those used by the programmer to interface to OS/Protogate.

Appendix A provides information for debugging software that executes in the OS/Pro-

togate environment, including system error codes and instructions for locating system

data structures.

Appendix B explicitly defines the system data structures in terms of field sizes and byte

offsets.

Appendix C provides one-page system-call summaries for C and assembly language

interfaces.

Appendix D provides some examples of task scheduling.

The Glossary of Acronyms lists the acronyms used in this manual.

References

Freeway general support:

• Freeway 3100 Hardware Installation Guide DC 900-2002

• Freeway 3200 Hardware Installation Guide DC 900-2003

• Freeway 3400 Hardware Installation Guide DC 900-2004
12 DC 900-2008A

Preface

• Freeway 3600 Hardware Installation Guide DC 900-2005

• Freeway Programmable Communications Servers Technical
Overview

25-000-0374

• Freeway User’s Guide DC 900-1333

Freeway programming support:

• Freeway Client-Server Interface Control Document DC 900-1303

• Freeway Data Link Interface Reference Guide DC 900-1334

• Freeway OS/Protogate Programmer’s Guide DC 900-2008

• Freeway Transport Subsystem Interface Reference Guide DC 900-1335

• ICP2432B Hardware Description and Theory of Operation DC 900-2006

Freeway protocol support:

• Freeway ADCCP NRM Programmer’s Guide DC 900-1317

• Freeway Asynchronous Wire Service (AWS) Programmer’s Guide DC 900-1324

• Freeway BSC Programmer’s Guide DC 900-1340

• Freeway FMP Programmer’s Guide DC 900-1339

• Freeway HDLC Low-Level Interface DC 900-1352

• Freeway Protocol Software Toolkit Programmer’s Guide DC 900-1338

• Freeway SWIFT and CHIPS Programmer’s Guide DC 900-1344

• Freeway X.25 Low-Level Interface DC 900-1307
DC 900-2008A 13

Freeway OS/Protogate Programmer’s Guide
Customer Support

If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday

through Friday between 8 a.m. and 5 p.m. Pacific time.

You can also fax your questions to us at (877) 473-0190 any time. Please include a cover

sheet addressed to “Customer Service.”

We are always interested in suggestions for improving our products. You can use the

report form in the back of this manual to send us your recommendations.
14 DC 900-2008A

Chapter
1 Overview
1.1 Freeway Overview

Protogate’s Freeway communications servers enable client applications on a local-area

network (LAN) to access specialized WANs through the Freeway API. The Freeway

Server can be any of several models (for example: Freeway 3100, Freeway 3200, or Free-

way 3400). The Freeway Server is user programmable and communicates in real time.

It provides multiple data links and a variety of network services to LAN-based clients.

Figure 1–1 shows the Freeway Server product configuration.

To maintain high data throughput, the Freeway Server uses a multi-processor architec-

ture to support the LAN and WAN services. The LAN interface is managed by a single-

board computer, called the server processor. It uses the commercially available FreeBSD

or VxWorks operating system to provide a full-featured base for the LAN interface and

layered services needed by Freeway.

The Freeway Server can be configured with multiple WAN interface processor boards,

each of which is a Protogate ICP. Each ICP runs the communication protocol software

using Protogate’s real-time operating system.
DC 900-2008A 15

Freeway OS/Protogate Programmer’s Guide
Figure 1–1: Freeway Configuration

WAN
Interface

Processors

Freeway Server

ICP

ICP

E
th

er
n

et
 L

A
N

34
13

WAN Protocol
Options

Defense

Financial

SCADA

Commercial
 X.25
 Bisync
 HDLC . . .

In
du

st
ry

 S
ta

n
da

rd
 B

u
s

Server
Processor

Client 1

Client 2

Client n

……

Application
 1

 DLI

Application
 2

 DLI

Application
 n

 DLI
16 DC 900-2008A

1: Overview
Summary of Freeway features:

• Freeway Server standard support for Ethernet LANs running the transmission

control protocol/internet protocol (TCP/IP)

• Support for multiple ICPs (two, four, or eight communication lines per ICP)

• Wide selection of electrical interfaces including EIA-232, EIA-449, EIA-530,

EIA-562, V.35, and MIL-188

• Freeway Server management and performance monitoring with the simple net-

work management protocol (SNMP), as well as interactive menus available

through a local console, telnet, or rlogin

• Variety of off-the-shelf communication protocols available from Protogate which

are independent of the client operating system and hardware platform

• Support for multiple WAN communication protocols simultaneously

• Elimination of difficult LAN and WAN programming and systems integration by

providing a powerful and consistent Freeway API

• Creation of customized server-resident and ICP-resident software, using Proto-

gate’s software development toolkits
DC 900-2008A 17

Freeway OS/Protogate Programmer’s Guide
1.2 OS/Protogate Overview

The operating system that runs on the ICP is Protogate’s OS/Protogate real-time exec-

utive, which is optimized for communications applications. Customers of Protogate’s

commercial off-the-shelf protocols need no knowledge of OS/Protogate, but system

integrators developing customized Freeway applications to run on the ICP need to

understand how to use OS/Protogate, as explained in this manual.

OS/Protogate is a real-time operating system kernel designed for Motorola’s ColdFire®

family of processors. In the real-time environment, actions are generally interrupt-

driven and many operations proceed logically in parallel. To support this environment,

OS/Protogate provides a multi-tasking system with priorities and optional time slicing.

The following system components are defined:

Tasks Entities that execute logically in parallel

Queues Linked lists used for intertask communication

and for ordering events

Alarms Used to schedule timed activities

Partitions Blocks of memory divided into buffers

Resources Used to allocate or control access to objects

The system environment is completely configurable and dynamic: the maximum num-

ber of each component is configurable at system initialization, and instances of each can

be dynamically created (up to the maximum) and deleted during system operation.

OS/Protogate includes 30 system service routines, which are accessed through the

exception vector table using software interrupts (the TRAP instruction). The addresses of

the system routines, therefore, need not be available to application tasks, as they would

if the routines were accessed with ordinary subroutine calls. This allows the kernel to be

maintained as a stand-alone module, with no link to application programs required.
18 DC 900-2008A

1: Overview
As an operating system kernel, OS/Protogate is only one part of what might be consid-

ered a complete operating system. For example, device drivers and host I/O services are

not included in the kernel, but are provided with it as components of the software tool-

kit. Depending on the user’s requirements, any additional application- or hardware-

specific facilities can be added as operating system extensions (using additional soft-

ware interrupt vectors) or at the task level.
DC 900-2008A 19

Freeway OS/Protogate Programmer’s Guide
20 DC 900-2008A

Chapter
2 Principles of Operation
2.1 System Scheduling

In a multi-tasking operating system, processes execute logically in parallel. In actuality,

only one task executes at a time, but tasks are “rescheduled” periodically; that is, execu-

tion of the current task is suspended and another task is dispatched. The rules for sys-

tem scheduling are as follows:

1. The task that is executing is suspended (preempted) when:

• it is time sliced (has been executing for the maximum allowable time

period);

• it terminates;

• it requests suspension;

• a higher-priority task is scheduled for execution; or

• if time slicing is enabled, a task at the same priority is scheduled for execu-

tion.

2. When one of these events occurs, tasks are rescheduled. At this time, the task to be

dispatched (executed) is chosen from a group of tasks that are scheduled (wait-

ing) to execute.

3. A task is scheduled to execute when it is created (by another task with the Create

Task system call), when it is preempted (except when it has requested suspension
DC 900-2008A 21

Freeway OS/Protogate Programmer’s Guide
or has terminated), or as a result of a Resume or Post & Resume system call. A task

can be both executing and scheduled for execution. This can occur as a result of a

Resume or Post & Resume system call made by the task itself or by an interrupt

service routine during the task’s execution.

4. Of the tasks that are scheduled to execute, the system always dispatches the task

with the highest priority. If more than one task is at that priority, the task that was

scheduled first (has been waiting the longest) is dispatched.

2.2 Tasks

The maximum number of tasks in the system is configurable at system initialization.

For each configured task, the system creates a task control block, which is defined in

Section 4.1 on page 81. Tasks are created and deleted dynamically through the Create

Task and Delete Task system calls. Each task is identified by a task identification, sup-

plied as an input parameter to the Create Task system call.

2.3 Queues

As defined for this operating system, a queue is a linked list which can contain any num-

ber of queue elements. A particular queue can be singly linked (forward pointers only),

or doubly linked (forward and backward pointers). Any data structure containing a

standard system buffer header, as defined in Section 4.12 on page 97, can be used as a

queue element.

2.3.1 Singly Linked Queues

A singly linked queue consists of a head pointer, a tail pointer and the “next element”

field in the system buffer header of each queue element. The head pointer contains the

address of the first queue element. The tail pointer contains the address of the last queue

element. The “next element” field of each buffer header contains the address of the next
22 DC 900-2008A

2: Principles of Operation
queue element, except for the last, which contains zero. If the queue is empty, the head

pointer contains zero, and the value of the tail pointer is undefined.

2.3.2 Doubly Linked Queues

A doubly linked queue consists of a head pointer, a tail pointer, and the “next element”

and “previous element” fields in the system buffer header of each queue element. The

head pointer contains the address of the first queue element. The tail pointer contains

the address of the last queue element. The “next element” field of each buffer header

contains the address of the next queue element, except for the last, which contains the

address of the first queue element. The “previous element” field of each buffer header

contains the address of the previous queue element, except for the first, which contains

the address of the last queue element. If the queue is empty, the head pointer contains

zero, and the value of the tail pointer is undefined.

2.3.3 Exchange Queues

The operating system uses both singly and doubly linked queues for various purposes

internally and, in addition, you can define a configurable number of exchange queues

for intertask communication. (Chapter 4 includes descriptions of internal queues.)

The number of exchange queues created by the system during its initialization is a con-

figurable parameter. A queue control block (QCB) is maintained for each configured

exchange queue. Exchange queues are used for intertask communication, and a task can

also use them for internal message storage or for communication with an interrupt ser-

vice routine.

A task can own any number of exchange queues, which are obtained and released by

means of the Create Queue and Delete Queue system calls. At creation, the ID of the

task that will own the queue is specified, and also whether queue elements are to be sin-

gly or doubly linked. Each exchange queue is identified by a queue ID, which is also sup-

plied as an input parameter to the Create Queue system call.
DC 900-2008A 23

Freeway OS/Protogate Programmer’s Guide
Any task can post a message (add an element) to or accept a message (remove an ele-

ment) from an exchange queue. When a message is posted to a queue, its owner (and

only its owner) can optionally be scheduled to execute. The Post Message, Post &

Resume, and Accept Message system calls perform these functions.

2.3.4 Queue Ordering

In general, exchange queues, whether singly or doubly linked, are intended to be man-

aged as FIFOs; elements are added to the tail and removed from the head. However, the

Post Message and Post & Resume system calls optionally allow a message to be added to

the head of a queue.

Double links allow elements to be easily inserted or deleted at any position of a queue.

This can be useful when, for example, the queue is ordered according to the value of a

field within each queue element. The system uses internal doubly linked queues in this

manner, but system calls are not provided to perform these application-specific opera-

tions on exchange queues.

2.4 Memory Allocation

The operating system requires a fixed amount of memory for code, data, and stack, and

also a variable amount for data structures, based on the system configuration. The

memory used by tasks in the system is not controlled or even monitored by the operat-

ing system. The user is expected to coordinate the allocation of memory for code, data,

stack space, and memory partitions (for system buffers) to prevent conflict with the

operating system or among the various tasks.

2.4.1 Stacks

The Motorola ColdFire® processor used by OS/Protogate platforms provides a single

hardware stack pointer. A separate stack space must be allocated for each user task, and

its initial stack pointer value must be supplied to the system when the task is created.
24 DC 900-2008A

2: Principles of Operation
OS/Protogate reserves stack space for its own use during system initialization, and later

assigns this space for use as the system’s Timer task stack.

When any task is dispatched, its saved stack pointer value is stored in the hardware stack

pointer. This space is used for all stack operations until a new task is dispatched. Thus

when an interrupt occurs or a task makes a system call (enters supervisor state through

a TRAP instruction), the current task stack remains in effect. Exception processing,

therefore, adds to each task’s stack size requirements. Protogate recommends that

0x1000 bytes of stack be allocated for each user task.

When a task is not running, the latest 66 bytes of its stack are occupied by the saved val-

ues of its data registers, address registers, program counter, and status register (see

Section 4.14 on page 102).

2.4.2 Partitions

A partition is a block of memory that is subdivided into buffers of a particular size. The

maximum number of partitions that can be created is configurable at system initializa-

tion. Partitions are created and deleted dynamically through the Create Partition and

Delete Partition system calls. Each partition is identified by an ID, which is supplied as

an input parameter to the Create Partition system call.

The system maintains a partition control block (PCB) for each configured partition.

The format of the PCB is described in Section 4.4 on page 85 and includes a linked list

(a singly linked queue) of available buffers for that partition. A task requests a system

buffer of a particular size by specifying (as an input parameter to the Request Buffer sys-

tem call) the ID of a partition that contains buffers of that size.

2.5 Timer Services

Timer services are based on the accumulation of system ticks. Ticks are intervals of

time, expressed in milliseconds, as defined in the System Configuration Table. Three

basic timer services are supplied by the system:
DC 900-2008A 25

Freeway OS/Protogate Programmer’s Guide
1. A task can suspend with a timer set (sleep) for some number of ticks, after which

it is scheduled for execution.

2. A task can set an alarm for some number of ticks; when the timer expires, it can

set a flag and asynchronously call a signal routine to the task’s execution.

3. If time slicing is enabled for a task, its execution is suspended after the time slice

period has expired, and it is rescheduled immediately.

2.5.1 Timer Interrupt Service Routine (ISR)

Timer services are supplied by a combination of interrupt- and task-level code. The

Timer ISR is entered on interrupt from the system clock. The ISR decrements a system

tick count set by the Timer task and, if it has expired, schedules the Timer task for exe-

cution. If time slicing is enabled for the currently executing task, the time slice tick

count is decremented. If it has expired, the task is suspended, rescheduled, and another

(or the same) task is dispatched.

2.5.2 Timer Task

The Timer task is closely linked to the operating system in that it is scheduled for exe-

cution as part of the Set Timer and Suspend system calls (and also by the Timer ISR, as

noted previously). It is also the only task in the system that has direct access to certain

system data structures. It is responsible for decrementing the tick counts of running

alarms and processing alarm expirations. The system tick count decremented by the

Timer ISR is set by the Timer task to the minimum number of ticks remaining for a

running alarm.

The Timer task always runs at the highest priority (0). Thus when it is scheduled, it pre-

empts any user task that may be running, since user tasks are restricted to priority 1 or

lower (although this is delayed while task switching is disabled).
26 DC 900-2008A

2: Principles of Operation
2.5.3 Alarms

The maximum number of alarms in the system is a configurable parameter. A task can

own any number of alarms, which it obtains and releases by means of the Create Alarm

and Delete Alarm system calls. The system maintains an alarm control block (ACB) for

each configured alarm, described in Section 4.4 on page 85. Each alarm is identified by

an alarm ID, supplied by the task as an input parameter to the Create Alarm system call.

When an alarm is created, the caller can specify a standard or special alarm type. The

methods used by the Timer task to process the two types of alarms are slightly different.

Depending on the intended use of a particular alarm and the number of alarms in the

system, either a standard or a special alarm might be more efficient.

Less processing is required for a special alarm than for a standard alarm when it is

started or canceled or when its tick count is adjusted; however, less processing is

required to decrement the tick counts of running standard alarms than running special

alarms. This is because a relative tick count is maintained for each standard alarm, and

only the count for the alarm with the fewest remaining ticks is actually decremented. An

absolute tick count is maintained for each running special alarm, so that the count must

be decremented for each alarm, and the processing required is proportional to the

number of alarms running.

In general, therefore, the majority of alarms in the system should be standard; however,

for a limited number of alarms that are started, canceled, or adjusted frequently (espe-

cially where these operations are performed from an interrupt service routine), the spe-

cial alarm type might be more efficient.

A third alarm type, the task alarm, is used internally by the system. A task alarm is asso-

ciated with each task in the system. When a task is suspended with a timer set, its alarm

is set exactly as a standard alarm would be. When the alarm expires, the task is sched-

uled for execution. If the task is scheduled for some other reason, its alarm is canceled.

Task and standard alarms are treated identically by the Timer task.
DC 900-2008A 27

Freeway OS/Protogate Programmer’s Guide
2.6 Resource Management

Tasks and interrupt service routines might require temporary exclusive access to or pos-

session of certain resources. The operating system provides services to manage the allo-

cation of these resources.

The simplest resource is a single entity — it can be obtained (locked) or released

(unlocked). A more complex resource consists of a group of equivalent components; a

request for the resource results in the allocation of one of its components, with the

assumption that possession of any one of the components is acceptable to the requester.

The resource management services do not distinguish between the two types of

resources; a resource simply consists of one or more components.

Each component of a resource is represented by a “resource token.” Each resource token

is a queue element and must contain a standard system buffer header. Aside from the

header, the queue element contents, if any, are transparent to the system.

The maximum number of resources that can be created is configurable at system initial-

ization. (Any number of components can be associated with each resource.) Resources

are created and deleted dynamically through the Create Resource and Delete Resource

system calls. Each resource is identified by an ID, which is supplied as an input param-

eter to the Create Resource system call. The system maintains a resource control block

(RCB) for each configured resource. The format of the RCB is described in Section 4.3

on page 84 and includes a linked list (a queue) of resource tokens.

After creating a resource, a task generally “stocks” the resource, by building and “releas-

ing” (with a Release Resource system call) the appropriate number of resource tokens,

which are then linked by the system to the RCB queue.

A task requests a resource by specifying (as an input parameter to the Request Resource

system call) the resource identification. The system unlinks a resource token from the

RCB queue and returns its address to the requester. If no tokens are available, an error

is returned instead.
28 DC 900-2008A

2: Principles of Operation
In anticipation of the resource being unavailable, the requester can supply the address

of a “resource carrier” message on input to the Request Resource call. A resource carrier

is a queue element that has a standard system buffer header followed by a number of

fields, including a return queue identification. The format of the carrier message is

defined in Section 4.13 on page 100.

If a resource carrier is supplied, and if no tokens are available, the carrier is linked to the

RCB queue. (Note that the queue can contain tokens or carriers, but never both.)

Depending on a parameter specified when the resource was created, carriers are linked

to the queue in order of priority (based on a field in the carrier message) or to the tail

of the queue.

When a resource token becomes available (on a Release Resource system call), the

resource carrier at the head of the RCB queue is unlinked and the address of the

resource token is stored in a field of the carrier message, which is then posted to the

appropriate queue (as specified in the message).

If no carrier messages are queued when a resource is released, the resource token is

linked to the RCB queue and becomes available to the next requester.
DC 900-2008A 29

Freeway OS/Protogate Programmer’s Guide
30 DC 900-2008A

Chapter
3 System Calls
Most requests for system services go through a single vector in the exception vector

table, using the TRAP #0 instruction. A particular system call is specified by a function

code passed in a register, which the system call trap handler converts to the address of

the appropriate routine. The two exceptions to this rule are the Set Interrupt Level and

the Return from ISR system calls which, for speed, are accessed directly through sepa-

rate vectors. Input and output parameters are passed in registers. Programs written in a

high-level language can access the system calls through a subroutine interface library.

Before returning control to the task when a system call (including those accessed

through separate vectors) finishes, the calling task is preempted and another task is dis-

patched if all of the following are true:

• The call returns to user state (to the task level)

• Task rescheduling is not disabled

• Another task at a higher priority than the currently executing task is scheduled; or

if time slicing is enabled, another task at the same priority is scheduled

Each of the following sections describes the function of a system call, the C and assem-

bly language interfaces with their input and output parameters, and the access restric-

tions (in other words, whether the call can be made from a task, an interrupt service

routine, or both). Chapter 4 and Appendix B describe the data structures used by the

system calls. Appendix C contains quick-reference tables.
DC 900-2008A 31

Freeway OS/Protogate Programmer’s Guide
3.1 Task-Related Calls

This section describes the system calls that are related to the management of tasks:

• Create a Task (s_creat)

• Delete Calling Task (s_tdelet)

• Disable Task Rescheduling (s_lock)

• Enable Task Rescheduling (s_ulock)

• Suspend Calling Task (s_susp)

• Resume a Task (s_resum)

Tasks can be created as part of system initialization, reinitialization (see Section 3.6.1 on

page 76), or by another task with the Create Task system call. When a task is created, a

task control block (TCB) is allocated according to its task ID, and the task is scheduled

for execution.

After a task is executing, it can normally be preempted by a higher-priority task or by

an interrupt service routine. A task can use the Disable Task Rescheduling and Enable

Task Rescheduling system calls around critical sections of code to prevent processing

being preempted by another task. If interrupts must also be blocked, a task can use the

Set Interrupt Level system call instead (see Section 3.6.4 on page 79).

Tasks or interrupt service routines can use the Resume system call to schedule any task

for execution.

Unless a task is executing at the lowest priority in the system, it must periodically sus-

pend its execution so that the system can be rescheduled, giving lower-priority tasks an

opportunity to execute. The Suspend system call is used for this purpose and always

suspends the calling task; one task cannot suspend execution of another.
32 DC 900-2008A

3: System Calls
In some cases, a task may no longer be required after it has performed the specific func-

tion for which it was created. An example of this might be a “boot” task, which creates

the tasks, partitions, queues, and so on that will be used during normal operations. In

a case such as this, when the task has completed its processing, it can issue a Delete Task

system call, which deallocates its task ID and associated TCB. This routine always

deletes the calling task; one task cannot delete another.
DC 900-2008A 33

Freeway OS/Protogate Programmer’s Guide
3.1.1 Create a Task (ssss____ttttccccrrrreeeeaaaatttt)

Given the address of a task initialization structure, the Create Task system call dynami-

cally creates a task and schedules it for execution. The task initialization structure pro-

vides the task ID, priority, starting address, stack pointer and a time slice enable/disable

flag. Its format is described in Section 4.10 on page 94.

The TCB corresponding to the requested ID is allocated and initialized, and the task is

added to the dispatch queue for its priority (in other words, is scheduled for execution).

An error is returned if a task with the requested ID already exists (in other words, the

TCB is allocated) or if the ID or the priority is out of range. Valid task IDs and priorities

are dependent on the system configuration, as described in Section 4.9 on page 91.

C Interface:

int s_tcreat (tis)

struct TIS_TYPE *tis

tis:pointer to task initialization structure

return: 0x00 = good

0x01 = task ID is out of range

0x02 = task already exists

0x03 = priority is out of range
34 DC 900-2008A

3: System Calls
Assembly Interface:

TRAP #0

input: D0.L = 0x00

A0.L = address of task initialization structure

output: D0.L = completion status

0x00 = good

0x01 = task ID is out of range

0x02 = task already exists

0x03 = priority is out of range

Access: task only
DC 900-2008A 35

Freeway OS/Protogate Programmer’s Guide
3.1.2 Delete Calling Task (ssss____ttttddddeeeelllleeeetttt)

The Delete Task system call deactivates the calling task and frees the associated TCB. If

task rescheduling is disabled, it is automatically re-enabled. If the task is currently

scheduled for execution, it is removed from the dispatch queue. Control is passed to the

dispatcher, and the routine does not return to the caller.

C Interface:

void s_tdelet ()

return: none; does not return

Assembly Interface:

TRAP #0

input: D0.L = 0x01

output: none; does not return

Access: task only
36 DC 900-2008A

3: System Calls
3.1.3 Disable Task Rescheduling (ssss____lllloooocccckkkk)

The Lock Task system call disables task rescheduling, including time slicing. Until task

rescheduling is re-enabled, the executing task will not be preempted by any other task,

regardless of its priority. The Delete Task and Suspend calls automatically re-enable task

rescheduling.

C Interface:

void s_lock ()

return: none

Assembly Interface:

TRAP #0

input: D0.L = 0x02

output: none

Access: task only
DC 900-2008A 37

Freeway OS/Protogate Programmer’s Guide
3.1.4 Enable Task Rescheduling (ssss____uuuulllloooocccckkkk)

The Unlock Task system call enables task rescheduling. If a task makes a Suspend or

Delete Task system call with task rescheduling disabled, rescheduling is automatically

re-enabled and this call is not necessary.

C Interface:

void s_ulock ()

return: none

Assembly Interface:

TRAP #0

input: D0.L = 0x03

output: none

Access: task only
38 DC 900-2008A

3: System Calls
3.1.5 Suspend Calling Task (ssss____ssssuuuusssspppp)

The Suspend system call suspends execution of the calling task until an event occurs

that causes the task to be rescheduled. By creating an event control block (ECB) and

supplying its address as an input parameter to the routine, the calling task can selec-

tively enable rescheduling on any or all of the following events: task timer expiration,

Resume system call, or a Post & Resume call specifying a queue owned by the task and

listed in the ECB. In addition, the calling task can request to be removed from the dis-

patch queue if it is already scheduled at the time of suspension. The ECB format is

defined in Section 4.11 on page 95.

If the task does not supply an ECB address (in other words, the input parameter is zero),

all events are enabled, except that no alarm is set. The task will be scheduled to execute

on a Resume call or when a Post & Resume call is made with any of its queues specified.

If the task is already scheduled at the time of suspension, it remains scheduled.

If task rescheduling is disabled, it is automatically re-enabled when a task suspends.

If an ECB is supplied, and it contains the ID of an exchange queue that the task does not

own, an error is returned and the task is not suspended.

If an ECB is supplied, and it contains a nonzero alarm tick count, the alarm associated

with the task’s TCB is started. The signal routine address field of all task ACBs contains

the address of a special system subroutine. When the alarm expires, the Timer task calls

this subroutine, which schedules the associated (suspended) task for execution. If the

task is scheduled for some other reason before this occurs, the alarm is canceled.

On return from suspension, the event code signifies the event that caused the task to be

rescheduled. The high-order word of the event code signifies the event type: previous

scheduling, timer expiration, Resume, or Post & Resume. If the event type signifies Post

& Resume, the low-order word of the event code contains the queue ID; otherwise, the

low-order word is zero. Note that the event code signifies only the event that caused the

task to be rescheduled; additional enabled events might have occurred since that time.
DC 900-2008A 39

Freeway OS/Protogate Programmer’s Guide
C Interface:

void s_susp (ecb, event_code)

struct ECB_TYPE *ecb;

int *event_code;

ecb: pointer to ECB or zero to enable all events

event_code: if nonzero, event code is stored at this address on good return

0x010000 = previous scheduling

0x020000 = timer expiration

0x030000 = resume

0x04nnnn = post & resume (nnnn = queue ID)

Assembly Interface:

TRAP #0

input: D0.L = 0x04

A0.L = ECB address, or zero to enable all events

output: D0.L = completion status

0x00 = good

0x01 = invalid ID in ECB

D1.L = event code (if good completion)

0x010000 = previous scheduling

0x020000 = timer expiration

0x030000 = resume

0x04nnnn = post & resume (nnnn = queue ID)

Access: task only
40 DC 900-2008A

3: System Calls
3.1.6 Resume a Task (ssss____rrrreeeessssuuuummmm)

The Resume system call schedules the specified task for execution if it is currently exe-

cuting or suspended with Resume enabled (see Section 3.1.5 on page 39).

An error is returned if the specified task ID is invalid; otherwise, the completion status

is good, whether or not the call actually caused the task to be scheduled for execution.

C Interface:

int s_resum (task_id)

unsigned short task_id;

task_id: task ID

return: 0x00 = good

0x01 = invalid task ID

Assembly Interface:

TRAP #0

input: D0.L = 0x06

D1.W = task ID

output: D0.L = completion status

0x00 = good

0x01 = invalid task ID

Access: task or ISR
DC 900-2008A 41

Freeway OS/Protogate Programmer’s Guide
3.2 Queue-Related Calls

The system calls that are related to the management of exchange queues are as follows:

• Create a Queue (s_qcreat)

• Delete a Queue (s_qdelet)

• Post a Message to a Queue (s_post)

• Post a Message and Resume Queue Owner (s_postr)

• Accept a Message from a Queue (s_accpt)

An exchange queue can be created by a task with the Create Queue system call, which

allocates a QCB according to the queue identification. When the queue is created, it

must be designated as either singly or doubly linked. In addition, a task ID must be

specified as the “owner” of the queue.

After a queue has been created, tasks and interrupt service routines can add messages to

it with Post Message system calls and remove messages with Accept Message calls. Mes-

sages can be added either to the head or the tail of the queue but are always removed

from the head. If messages are always added to the tail, then the queue acts as a FIFO

(first in, first out). If messages are always added to the head, then the queue acts as a

LIFO (last in, first out).

Because it is often convenient to notify the owner of a queue when a message has been

added, the Post & Resume system call is provided, which is identical to the Post Message

system call except that it also causes the task that owns the queue to be scheduled for

execution.

If a queue is no longer required, the Delete Queue system call deallocates the queue ID

and associated QCB.
42 DC 900-2008A

3: System Calls
3.2.1 Create a Queue (ssss____qqqqccccrrrreeeeaaaatttt)

The Create Queue system call causes the QCB associated with the specified queue ID to

be allocated. As an input parameter, the caller must specify whether elements on the

queue are to be singly or doubly linked (see Section 2.3 on page 22).

The caller must also specify the ID of a task that will become the “owner” of the queue.

This task will be scheduled for execution when a Post & Resume call adds a message to

the queue, unless it is suspended with that event disabled (see Section 3.1.5 on page 39).

An error is returned if the queue is already allocated or if the task or queue ID is out of

range. Valid task and queue IDs are dependent on the system configuration, as

described in Section 4.9 on page 91. On a good completion, the QCB address is

returned. Under controlled circumstances this address can be used to implement more

sophisticated queue manipulation operations than those provided by the operating sys-

tem kernel.

C Interface:

int s_qcreat (queue_id, q_type, task_id, qcb)

unsigned short queue_id, q_type, task_id;

struct QCB_TYPE **qcb;

queue_id: queue ID

q_type: 0x00 = single links

0x01 = double links

task_id: task ID of queue owner

qcb: if nonzero, pointer to QCB is stored at this address on good

completion
DC 900-2008A 43

Freeway OS/Protogate Programmer’s Guide
return: 0x00 = good

0x01 = queue ID out of range

0x02 = queue not available

0x03 = task ID out of range

Assembly Interface:

TRAP #0

input: D0.L = 0x07

D1.W = queue ID

D2.W = single/double link flag

0x00 = single links

0x01 = double links

D3.W = task ID of queue owner

output: D0.L = completion status

0x00 = good

0x01 = queue ID out of range

0x02 = queue not available

0x03 = task ID out of range

A0.L = QCB address if good completion, else unchanged

Access: task only
44 DC 900-2008A

3: System Calls
3.2.2 Delete a Queue (ssss____qqqqddddeeeelllleeeetttt)

The Delete Queue system call frees the QCB associated with the specified queue ID.

An error is returned and the QCB is not deallocated if the caller does not own the

queue, if the queue is not empty, or if the queue ID is invalid.

C Interface:

int s_qdelet (queue_id)

unsigned short queue_id;

queue_id: queue ID

return: 0x00 = good

0x01 = invalid queue ID

0x02 = queue is not empty

Assembly Interface:

TRAP #0

input: D0.L = 0x08

D1.W = queue ID

output: D0.L = completion status

0x00 = good

0x01 = invalid queue ID

0x02 = queue is not empty

Access: task only
DC 900-2008A 45

Freeway OS/Protogate Programmer’s Guide
3.2.3 Post a Message to a Queue (ssss____ppppoooosssstttt)

The Post Message system call adds a message (a queue element) to the head or tail of the

specified queue. The queue element must contain a standard system buffer header, as

defined in Section 4.12 on page 97.

An error is returned if the specified queue is not currently allocated to any task or if the

“this element” field of the system buffer header does not contain the queue element

address.

C Interface:

int s_post (queue_id, head_tail, message)

unsigned short queue_id, head_tail;

struct SBH_TYPE *message;

queue_id: queue ID

head_tail: 0x00 = tail

0x01 = head

message: pointer to message

return: 0x00 = good

0x01 = invalid queue ID

0x02 = “this element” invalid
46 DC 900-2008A

3: System Calls
Assembly Interface:

TRAP #0

input: D0.L = 0x09

D1.W = queue ID

D2.W = head/tail flag

0x00 = tail

0x01 = head

A0.L = queue element address

output: D0.L = completion status

0x00 = good

0x01 = invalid queue ID

0x02 = “this element” invalid

Access: task or ISR
DC 900-2008A 47

Freeway OS/Protogate Programmer’s Guide
3.2.4 Post a Message and Resume Queue Owner (ssss____ppppoooossssttttrrrr)

The Post & Resume system call is identical to the Post Message call (Section 3.2.3 on

page 46) except that the task that owns the queue will be scheduled for execution unless

it is suspended with the event disabled (see Section 3.1.5 on page 39).

The completion status returned does not indicate whether the call actually caused the

task to be scheduled.

C Interface:

int s_postr (queue_id, head_tail, message)

unsigned short queue_id, head_tail;

struct SBH_TYPE *message;

queue_id: queue ID

head_tail: 0x00 = tail

0x01 = head

message: pointer to message

return: 0x00 = good

0x01 = invalid queue ID

0x02 = “this element” invalid
48 DC 900-2008A

3: System Calls
Assembly Interface:

TRAP #0

input: D0.L = 0x09

D1.W = queue ID

D2.W = head/tail flag

0x00 = tail

0x01 = head

A0.L = queue element address

output: D0.L = completion status

0x00 = good

0x01 = invalid queue ID

0x02 = “this element” invalid

Access: task or ISR
DC 900-2008A 49

Freeway OS/Protogate Programmer’s Guide
3.2.5 Accept a Message from a Queue (ssss____aaaaccccccccpppptttt)

The Accept Message system call removes a message from the head of the specified queue

and returns its address.

An error is returned if the queue ID is invalid or if the queue is empty.

C Interface:

int s_accpt (queue_id, message)

unsigned short queue_id;

struct SBH_TYPE **message;

queue_id: queue ID

message: pointer to message is stored at this address on good return

return: 0x00 = good

0x01 = invalid queue ID

0xFF = queue is empty

Assembly Interface:

TRAP #0

input: D0.L = 0x0B

D1.W = queue ID

output: D0.L = completion status

0x00 = good

0x01 = invalid queue ID

0xFF = queue is empty

A0.L = queue element address if good completion,

else unchanged

Access: task or ISR
50 DC 900-2008A

3: System Calls
3.3 Resource-Related Calls

The following system calls related to the management of resources are described in this

section:

• Create a resource (s_rcreat)

• Delete a resource (s_rdelet)

• Request a resource (s_rreq)

• Cancel a resource request (s_rcan)

• Release a resource (s_rrel)

A resource can be created by a task with the Create Resource system call, which allocates

an RCB according to the resource identification. The caller must specify either a prior-

ity or a FIFO resource, to determine the order in which resource tokens will be allo-

cated. After creating a resource, the task will generally “stock” it with one or more

resource tokens, each representing an available component of the resource.

Tasks and interrupt service routines can then obtain resource tokens with Request

Resource system calls and release tokens with Release Resource calls. When requesting

a resource, the caller can optionally provide the address of a resource carrier message. If

no resource token is available, the carrier message is added to the RCB queue (in FIFO

or priority order, depending on the type of resource). When a token becomes available,

it is attached to the carrier, and the carrier is posted to a queue specified by the

requester. A Cancel Resource Request system call can be cancel a resource request that

is waiting to be processed. If this happens, the carrier message is returned with no token

attached.

If a resource is no longer required, the Delete Resource system call deallocates the

resource ID and associated RCB and posts all available tokens or queued carrier mes-

sages to the appropriate queues.
DC 900-2008A 51

Freeway OS/Protogate Programmer’s Guide
3.3.1 Create a Resource (ssss____rrrrccccrrrreeeeaaaatttt)

The Create a Resource system call causes allocation of the RCB associated with the spec-

ified resource identification. The “priority/FIFO flag” input parameter signifies the

order in which carrier messages are to be queued when no resources are available. For a

priority resource, the carrier messages are queued according to the priority field in the

message (see Section 4.12 on page 97). For a FIFO resource, carrier messages are

queued in the order that they are received.

An error is returned if the resource is already allocated or if the resource ID is out of

range. Valid resource IDs are dependent on the system configuration, as described in

Section 4.9 on page 91.

To initialize the resource, this call should be followed with one or more calls to Release

Resource (see Section 3.3.5 on page 59).

C Interface:

int s_rcreat (res_id, res_type)

unsigned short res_id, res_type;

res_id: resource ID

res_type: 0x00 = FIFO

0x01 = priority

return: 0x00 = good

0x01 = resource ID out of range

0x02 = resource not available
52 DC 900-2008A

3: System Calls
Assembly Interface:

TRAP #0

input: D0.L = 0x0C

D1.W = resource ID

D2.W = priority/FIFO flag

0x00 = FIFO

0x01 = priority

output: D0.L = completion status

0x00 = good

0x01 = resource ID out of range

0x02 = resource not available

Access: task only
DC 900-2008A 53

Freeway OS/Protogate Programmer’s Guide
3.3.2 Delete a Resource (ssss____rrrrddddeeeelllleeeetttt)

The Delete Resource system call frees the RCB associated with the specified resource

identification. A queue ID must be specified as an input parameter, to which any

resource tokens currently queued will be posted. If, instead, one or more resource car-

rier messages are queued, each message is posted to the appropriate queue, as specified

in the message, with a completion code signifying that the requested resource has been

deleted.

C Interface:

int s_rdelet (res_id, queue_id)

unsigned short res_id, queue_id;

res_id: resource ID

queue_id: queue ID

return: 0x00 = good

0x01 = invalid resource ID

0x02 = invalid queue ID

Assembly Interface:

TRAP #0

input: D0.L = 0x0D

D1.W = resource ID

D2.W = queue ID

output: D0.L = completion status

0x00 = good

0x01 = invalid resource ID

0x02 = invalid queue ID

Access: task only
54 DC 900-2008A

3: System Calls
3.3.3 Request a Resource (ssss____rrrrrrrreeeeqqqq)

The Request Resource system call unlinks a resource token from the appropriate RCB

(as specified by the resource ID) and returns its address. If no resource tokens are avail-

able, an error is returned to the caller.

The caller can optionally supply the address of a resource carrier message. The format

of this message (a queue element) is defined in Section 4.13 on page 100. If a resource

token is available, this parameter is not used; otherwise, if a carrier message address is

supplied, the message is added to the RCB queue. For a priority resource, it is inserted

into the queue according to the priority specified in the message (which does not nec-

essarily correspond to task priority). For a FIFO resource, it is linked to the tail of the

queue.

When a resource becomes available (in other words, is released with a Release Resource

system call) and no higher-priority or longer-waiting message is queued (depending on

the type of resource), the address of the resource token is stored in a field of the carrier

message, the completion code in the message is set to signify that the resource has been

allocated, and the message is posted to the specified queue.

C Interface:

int s_rreq (res_id, carrier, token)

unsigned short res_id;

struct RC_TYPE *carrier;

struct SBH_TYPE **token;

res_id: resource ID

carrier: pointer to resource carrier message, or zero

token: pointer to resource token is stored at this address on good return

(token can be a pointer to a user-defined structure type)
DC 900-2008A 55

Freeway OS/Protogate Programmer’s Guide
return: 0x00 = good

0x01 = invalid resource ID

0x02 = invalid queue ID in carrier message

0x03 = “this element” field of carrier message invalid

0xFF = no resource tokens available

Assembly Interface:

TRAP #0

input: D0.L = 0x0E

D1.W = resource ID

A0.L = resource carrier message address, or zero

output: D0.L = completion status

0x00 = good

px01 = invalid resource ID

0x02 = invalid queue ID

0x03 = “this element” field of carrier message invalid

0xFF = no resource tokens available

A0.L = resource token address (if good completion)

Access: task or ISR
56 DC 900-2008A

3: System Calls
3.3.4 Cancel a Resource Request (ssss____rrrrccccaaaannnn)

The Cancel Resource Request system call searches the queue of the appropriate RCB (as

signified by the resource ID) for the specified carrier message address. If the message is

found, it is unlinked from the RCB queue, the completion code field is set to signify a

canceled request, and the message is posted to the appropriate queue (as specified in the

message). If the message is not found on the RCB queue, no action is taken.

Note that the completion code in the returned carrier message should be checked to

verify that the request was actually canceled, because the resource might already have

been allocated when the request was received. If the completion code signifies that the

request was canceled, no further action is required, but if the resource was allocated, the

token must be released with a Release Resource system call (see Section 3.3.5 on

page 59).

C Interface:

int s_rcan (res_id, carrier)

unsigned short res_id;

struct RC_TYPE *carrier;

res_id: resource ID

carrier: pointer to resource carrier message

return 0x00 = good

0x01 = invalid resource ID
DC 900-2008A 57

Freeway OS/Protogate Programmer’s Guide
Assembly Interface:

TRAP #0

input: D0.L = 0x0F

D1.W = resource ID

A0.L = resource carrier message address

output: D0.L = completion status

0x00 = good

0x01 = invalid resource ID

Access: task or ISR
58 DC 900-2008A

3: System Calls
3.3.5 Release a Resource (ssss____rrrrrrrreeeellll)

The Release Resource system call returns a resource token to the RCB associated with

the specified resource identification. If one or more carrier messages are attached to the

RCB queue, the following events occur:

• The message at the head of the queue is unlinked.

• The address of the resource token is stored in a field of the message.

• The completion code is set to signify that the resource has been allocated.

• The carrier message is posted to the appropriate queue, as specified in the mes-

sage.

If the RCB queue is empty or already contains one or more resource tokens, the released

token is linked to the tail of the queue.

This call is used not only to release a previously allocated resource, but also by the cre-

ator of a resource to initially “stock” the RCB queue with one or more resource tokens.

C Interface:

int s_rrel (res_id, token)

signed short res_id;

struct SBH_TYPE *token;

res_id: resource ID

token: pointer to resource token message

return: 0x00 = good

0x01 = invalid resource ID

0x02 = “this element” field of token message invalid
DC 900-2008A 59

Freeway OS/Protogate Programmer’s Guide
Assembly Interface:

TRAP #0

input: D0.L = 0x10

D1.W = resource ID

A0.L = resource token address

output: D0.L = completion status

0x00 = good

0x01 = invalid resource ID

0x02 = “this element” field of token message invalid

Access: task or ISR
60 DC 900-2008A

3: System Calls
3.4 Partition-Related Calls

The following system calls are related to the management of partitions:

• Create a Partition (s_pcreat)

• Delete a Partition (s_pdelet)

• Request a Buffer (s_breq)

• Release a Buffer (s_brel)

By providing its address range and buffer size, a task can create a partition with the Cre-

ate Partition system call. A PCB is allocated according to the partition ID, and a linked

list of buffers is created.

After a partition has been created, tasks and interrupt service routines can obtain and

release buffers with the Request Buffer and Release Buffer system calls. If the partition

is empty when a buffer is requested, an error is returned. If a task must wait for a buffer

(by suspending) rather than repeating the request until it is successful, then it might be

more convenient to maintain free buffers on an exchange queue or as resource tokens.

If a partition is no longer required, the Delete Partition system call deallocates the par-

tition ID and associated PCB. The memory included in the partition becomes available

for use again.
DC 900-2008A 61

Freeway OS/Protogate Programmer’s Guide
3.4.1 Create a Partition (ssss____ppppccccrrrreeeeaaaatttt)

The Create Partition system call allocates and initializes the PCB associated with the

specified partition identification. The specified block of memory is divided into buffers

of the requested size, and all buffers are linked to the partition’s free list (see Section 4.4

on page 85).

An error is returned if the partition ID is already assigned, is out of range, or the size of

the partition does not allow at least one buffer to be created. Valid partition IDs are

dependent on the system configuration, as described in Section 4.9 on page 91.

The buffer size specified must include the size of the system buffer header (see

Section 4.12 on page 97). For example, a buffer size of 100 would include the 24-byte

header and 76 bytes of user data space.

If the partition size is not an even multiple of the buffer size, a number of bytes (smaller

than the buffer size) will be unused at the end of the partition. The system does not

check the availability of the memory included in the partition. The user is responsible

for assuring that the partition will not conflict with code, data, or the memory range of

other partitions.

C Interface:

int s_pcreat (part_id, buffer_size, start_addr, end_addr, pcb)

unsigned short part_id;

int buffer_size, start_addr, end_addr;

struct PCB_TYPE **pcb;

part_id: partition ID

buffer_size: size of each buffer

start_addr: address of start of partition

end_addr: address of end of partition + 1
62 DC 900-2008A

3: System Calls
pcb: if nonzero, pointer to PCB is stored at this address on good com-

pletion

return: 0x00 = good

0x01 = partition ID out of range

0x02 = partition not available

0x03 = invalid partition size

0x04 = invalid buffer size

Assembly Interface:

TRAP #0

input: D0.L = 0x11

D1.W = partition ID

D2.L = buffer size

A0.L = starting address

A1.L = ending address + 1

output: D0.L = completion status

0x00 = good

0x01 = partition ID out of range

0x02 = partition not available

0x03 = invalid partition size

0x04 = invalid buffer size

A0.L = PCB address if good completion, else unchanged

Access: task only
DC 900-2008A 63

Freeway OS/Protogate Programmer’s Guide
3.4.2 Delete a Partition (ssss____ppppddddeeeelllleeeetttt)

The Delete Partition system call frees the PCB associated with the specified partition

identification.

An error is returned and the partition is not deleted if any buffers are currently allocated

(not linked to the free list).

C Interface:

int s_pdelet (part_id)

unsigned short part_id;

part_id: partition ID

 return: 0x00 = good

0x01 = invalid partition ID

0x02 = one or more buffers currently allocated

Assembly Interface:

TRAP #0

input: D0.L = 0x12

D1.W = partition ID

output: D0.L = completion status

0x00 = good

0x01 = invalid partition ID

0x02 = one or more buffers currently allocated

Access: task only
64 DC 900-2008A

3: System Calls
3.4.3 Request a Buffer (ssss____bbbbrrrreeeeqqqq)

The Request Buffer system call unlinks a system buffer from the free list of the specified

partition and returns the address of the buffer. Other than the “partition ID” and “this

element” fields of the system buffer header, the contents of the buffer are unspecified.

An error is returned if the partition is not allocated or if its free list is empty.

C Interface:

int s_breq (part_id, buffer)

unsigned short part_id;

struct SBH_TYPE **buffer;

part_id: partition ID

buffer: pointer to buffer is stored at this address on good return

return: 0x00 = good

0x01 = invalid partition ID

0xFF = no buffers available

Assembly Interface:

TRAP #0

input: D0.L = 0x13

D1.W = partition ID

output: D0.L = completion status

0x00 = good

0x01 = invalid partition ID

0xFF = no buffers available

A0.L = buffer address if good completion, else unchanged

Access: task or ISR
DC 900-2008A 65

Freeway OS/Protogate Programmer’s Guide
3.4.4 Release a Buffer (ssss____bbbbrrrreeeellll)

The Release Buffer system call returns a system buffer to the free list of its partition.

An error is returned if the address of the buffer is out of range for the partition, if the

partition ID in the system buffer header is invalid, or if the “this element” field of the

system buffer header is not equal to the address of the buffer. The assumption is that the

buffer has been allocated and is not already linked to the free list.

C Interface:

int s_brel (buffer)

struct SBH_TYPE *buffer;

buffer: pointer to buffer

return: 0x00 = good

0x01 = invalid partition ID

0x02 = “this element” field invalid

0x03 = buffer address out of range for partition

Assembly Interface:

TRAP #0

input: D0.L = 0x14

A0.L = buffer address

output: D0.L = completion status

0x00 = good

0x01 = invalid partition ID

0x02 = “this element” field invalid

0x03 = buffer address out of range for partition

Access: task or ISR
66 DC 900-2008A

3: System Calls
3.5 Alarm-Related Calls

This section describes the system calls related to the management of standard and spe-

cial alarms:

• Create an Alarm (s_acreat)

• Delete an Alarm (s_adelet)

• Set an Alarm (s_aset)

• Cancel an Alarm (s_acan)

A task can create an alarm using the Create Alarm system call, which allocates an ACB

according to the alarm identification. The caller must specify the type (standard or spe-

cial) and, as an option, might provide a flag or signal-routine address and a mask value

for the flag.

After an alarm has been created, tasks and interrupt service routines can start the alarm,

using the Set Alarm system call, for a specified number of ticks. After the alarm is

started, it can be canceled with the Cancel Alarm system call.

When an alarm expires, the flag (if any) is set as specified by the mask, and the signal

routine (if any) is called.

If an alarm is no longer required, the Delete Alarm system call deallocates the alarm ID

and associated ACB.
DC 900-2008A 67

Freeway OS/Protogate Programmer’s Guide
3.5.1 Create an Alarm (ssss____aaaaccccrrrreeeeaaaatttt)

The Create Alarm system call allocates and initializes the ACB associated with the spec-

ified alarm identification. On input, the calling task must specify either a standard or

special alarm type (described in Section 2.5.3 on page 27).

The address of a signal routine is an optional input parameter. This routine is called by

the Timer task after the alarm has been set and its ticks have expired. The Timer task

passes the alarm ID as an input parameter to the signal routine in the low-order word

of register D0. In addition, the address of a 32-bit flag and a bit mask can be specified.

When the alarm expires, the Timer task sets the specified bits in the flag. If neither a sig-

nal routine address nor a flag address is specified, no action is taken on alarm expira-

tion.

The environment of the signal routine is as follows:

• A signal routine is a subroutine (and is not an interrupt service routine). It is

accessed by means of a subroutine call made directly from the Timer task; there-

fore, it executes in the context of the highest priority task in the system and will

not be preempted by another task. The processor executes in user state and the

interrupt mask level is zero (all interrupts enabled).

• The signal routine is called with the ID of the expired alarm in the low-order word

of register D0. Registers D0 through D7 and A0 through A6 can be modified and

need not be restored.

• With the obvious exceptions of Suspend Task and Delete Task, a signal routine

may make any system call valid for task-level access, including Set Alarm to restart

the expired alarm. However, keep in mind that the signal routine is executed as

part of the Timer task. Certain calls may be inappropriate (such as Create Queue,

which would cause the new queue to be owned by the Timer task, not the user

task). And certain calls would be pointless (such as Lock Task, because the Timer

task cannot be preempted anyway).
68 DC 900-2008A

3: System Calls
Create Alarm returns an error if the ACB is already assigned or the alarm ID is out of

range. Valid alarm IDs are dependent on the system configuration, as described in

Section 4.9 on page 91. On good completion, the ACB address is returned, which can be

used to modify the signal routine address, flag address, or bit mask before setting the

alarm.

C Interface:

int s_acreat (alarm_id, alarm_type, mask, signal, flag, acb)

unsigned short alarm_id, alarm_type;

int mask;

int *signal();

int *flag;

struct ACB_TYPE **acb;

alarm_id: alarm ID

alarm_type: 0x00 = standard
0x01 = special

mask: bit mask for flag, or zero

signal: pointer to signal routine, or zero

flag: pointer to 32-bit flag, or zero

acb: if nonzero, pointer to ACB is stored at this address on good

completion

return: 0x00 = good

0x01 = alarm ID out of range

0x02 = alarm not available
DC 900-2008A 69

Freeway OS/Protogate Programmer’s Guide
Assembly Interface:

TRAP #0

input: D0.L = 0x15

D1.W = alarm ID

D2.W =alarm type

0x00 = standard

0x01 = special

D3.L = bit mask for flag, or zero

A0.L = address of signal routine, or zero

A1.L = address of flag, or zero

output: D0.L = completion status

0x00 = good

0x01 = alarm ID out of range

0x02 = alarm not available

A0.L = ACB address if good completion, else unchanged

Access: task only
70 DC 900-2008A

3: System Calls
3.5.2 Delete an Alarm (ssss____aaaaddddeeeelllleeeetttt)

The Delete Alarm system call frees the ACB associated with the specified alarm identi-

fication. If the alarm is running, it is canceled.

C Interface:

int s_adelet (alarm_id)

unsigned short alarm_id;

alarm_id: alarm ID

return: 0x00 = good

0x01 = invalid alarm ID

Assembly Interface:

TRAP #0

input: D0.L = 0x16

D1.W = alarm ID

output: D0.L = completion status

0x00 = good

0x01 = invalid alarm ID

Access: task only
DC 900-2008A 71

Freeway OS/Protogate Programmer’s Guide
3.5.3 Set an Alarm (ssss____aaaasssseeeetttt)

The Set Alarm system call starts an alarm or adjusts the tick count in an alarm that is

already running. The ACB associated with the specified alarm ID is linked to the tail of

the special alarm queue (if it is not already linked to the queue), the absolute requested

tick count is stored in the ACB, and the Timer task is scheduled for execution. If a tick

count greater than 32767 is specified, 32767 is used instead (no error is returned). The

actual duration of the alarm varies between the number of ticks specified and that num-

ber plus one.

For a standard alarm, the Timer task, when it executes, moves the ACB to the appropri-

ate position in the standard alarm queue based on the requested tick count, which is

converted to a relative value at that time (see Section 4.6 on page 88).

When the alarm ticks have expired, the Timer task unlinks the ACB from the standard

or special alarm queue. If a nonzero flag address and bit mask are stored in the ACB, the

Timer task sets the specified bits in the flag. If a nonzero signal routine address is stored

in the ACB, the Timer task makes a subroutine call to that address.

C Interface:

int s_aset (alarm_id, ticks)

unsigned short alarm_id;

short ticks

alarm_id: alarm ID

ticks: number of ticks (1–0x7FFF)

return: 0x00 = good

0x01 = invalid alarm ID
72 DC 900-2008A

3: System Calls
Assembly Interface:

TRAP #0

input: D0.L = 0x17

D1.W = alarm ID

D2.W = number of ticks (1–0x7FFF)

output: D0.L = completion status

0x00 = good

0x01 = invalid alarm ID

Access: task or ISR
DC 900-2008A 73

Freeway OS/Protogate Programmer’s Guide
3.5.4 Cancel an Alarm (ssss____aaaaccccaaaannnn)

If the alarm associated with the specified alarm ID is running, the Cancel Alarm system

call causes the ACB to be unlinked from the standard alarm queue or marked canceled

on the special alarm queue. Canceled ACBs are removed from the special alarm queue

by the Timer task.

If Cancel Alarm is called when the alarm is not running, no action is taken.

C Interface:

int s_acan (alarm_id)

unsigned short alarm_id;

alarm_id: alarm ID

return: 0x00 = good

0x01 = invalid alarm ID

Assembly Interface:

TRAP #0

input: D0.L = 0x18

D1.W = alarm ID

output: D0.L = completion status

0x00 = good

0x01 = invalid alarm ID

Access: task or ISR
74 DC 900-2008A

3: System Calls
3.6 Miscellaneous Calls

This section describes the remaining system calls:

• Initialize OS (s_osinit)

• Get System Address Table (s_getsat)

• Return from ISR (s_iret)

• Set Interrupt Level (s_iset)

A task or interrupt service routine can reinitialize the operating system using the

Initialize OS system call.

The Get System Address Table system call can be used by a task or interrupt service rou-

tine to obtain the addresses of the current configuration table, the exception vector

table, and the global system table.

Interrupt service routines may complete their processing with a Return from ISR sys-

tem call rather than executing an RTE instruction.

Because tasks execute in user state, they cannot directly modify the processor’s interrupt

mask level. The Set Interrupt Level system call is provided for this purpose.
DC 900-2008A 75

Freeway OS/Protogate Programmer’s Guide
3.6.1 Initialize OS (ssss____oooossssiiiinnnniiiitttt)

Given the address of a table containing the configurable system parameters (see

Section 4.9 on page 91), the Initialize OS system call causes reinitialization of the oper-

ating system. If the input parameter is equal to zero, the current configuration table is

used.

This call does not return.

C Interface:

int s_osinit (config)

struct CFP_TYPE *config;

config: address of configuration table, or zero if current table is to be

used

return: none; does not return

Assembly Interface:

TRAP #0

input: D0.L = 0x19

A0.L = address of configuration table, or zero if current table is

to be used

output: none; does not return

Access: task or ISR
76 DC 900-2008A

3: System Calls
3.6.2 Get System Address Table (ssss____ggggeeeettttssssaaaatttt)

The Get System Address Table system call returns the address of the system address

table. This table contains three addresses in the following format:

struct SAT_TYPE

{

struct CFG_TYPE *sat_cfgp;/* address of configuration table */

int *sat_evtp; /* address of exception vector table*/

struct GST_TYPE *sat_gstp;/* address of global system table */

};

See Section 4.9 on page 91 for the definition of the configuration table and Section 4.15

on page 103 for the definition of the global system table. The exception vector table is as

defined by the Motorola ColdFire® family of processors (an array of 256 addresses cor-

responding to the 256 possible exception vectors). User tasks require access to it for pur-

poses of connecting serial port DMA and non-DMA interrupts to their user-supplied

service routines.

C Interface:

struct SAT_TYPE *s_getsat ()

return: address of system address table

Assembly Interface:

TRAP #0

input: D0.L = 0x1A

output: D0.L = address of system address table

Access: task or ISR
DC 900-2008A 77

Freeway OS/Protogate Programmer’s Guide
3.6.3 Return from ISR (ssss____iiiirrrreeeetttt)

An interrupt service routine may issue an ISR Return system call at the completion of

its processing rather than executing a return from exception (RTE) instruction. If the

interrupted code was user state (task level), and if a task switch is waiting to be pro-

cessed, control is transferred to the dispatcher for task rescheduling; otherwise, an RTE

is executed and control is returned to the interrupted code. In the interest of efficiency,

this call is made by a TRAP through a separate vector.

The ISR for the highest-priority interrupt in the system can execute an RTE directly if it

has not made a system call that can have caused a task to be scheduled (Create Task,

Resume, Post & Resume, or Set Alarm). Any other ISR should probably issue an ISR

Return system call, because it may be interrupted by a higher-priority interrupt. The

ISR for that overriding interrupt can cause a task to be scheduled, but the task switch

will not be performed at its completion, since it returns to the lower ranking ISR rather

than to user state.

NOTE: Serial port ISRs operate at level 5 (7 being highest). The optional user extension

to the Timer ISR operates at level 4. Normally there are no other user-coded ISRs.

C Interface:

void s_iret ()

return: none; does not return

Assembly Interface:

TRAP #1

input: none

output: none; does not return

Access: ISR only
78 DC 900-2008A

3: System Calls
3.6.4 Set Interrupt Level (ssss____iiiisssseeeetttt)

The Set Interrupt Level system call sets the interrupt priority mask value in the Motor-

ola ColdFire® processor’s status register, and returns the mask value that it had before

the change. This call is supplied because all tasks operate in user state and cannot

directly modify the contents of the status register. In the interest of efficiency, it is made

directly by a TRAP through a separate vector. The return value can be used by a task to

restore the interrupt priority mask to its previous value with a second call to this rou-

tine.

C Interface:

unsigned short s_iset (mask)

unsigned short mask;

mask: interrupt mask value to set

return: mask value before change

Assembly Interface:

TRAP #2

input: D0.W = interrupt priority mask value

output: D0.W = priority mask value before change

Access: task only
DC 900-2008A 79

Freeway OS/Protogate Programmer’s Guide
80 DC 900-2008A

Chapter
4 System Data Structures
This chapter describes the data structures used to control system operation. Except

where noted, these structures are internal to the operating system and cannot be

directly accessed by application tasks. Definitions of the internal data structures are

provided here to aid in debugging and understanding the system’s operation.

The data structures are defined in C language format. The data type short is 16 bits.

Pointers and the data type int are 32 bits. Structure definitions are padded, where nec-

essary, to the next longword boundary, to ensure uniformity across “C” compilers in the

packing of arrays of these structures, and compatibility of the results with user assembly

code that addresses such arrays. For additional clarity, Appendix B defines each struc-

ture by field sizes and offsets in a manner useful for assembler coding.

4.1 Task Control Block (TCB)

The system maintains a 28-byte TCB for each configured task, which contains informa-

tion related to the task’s execution state. TCBs are arranged as an array of structures,

with the task ID used as an index into the array. Each TCB contains the following infor-

mation:

struct TCB_TYPE

{

struct TCB_TYPE *t_next; /* link to next TCB on disp.q */

unsigned short t_id; /* task ID */

unsigned short t_pri; /* task priority */
DC 900-2008A 81

Freeway OS/Protogate Programmer’s Guide
unsigned short t_slice; /* 0 = time slicing disabled; */

/* 1 = enabled */

unsigned short t_state; /* task state (see below) */

unsigned int t_stack; /* user stack pointer */

struct ECB_TYPE *t_ecb; /* ECB address */

struct ACB_TYPE *t_acb; /* ACB address */

unsigned int t_event; /* event that resumed the task */

};

The t_state field can contain the following values:

0x0000 terminated (TCB is not allocated)

0x0001 task is currently executing

0x0002 task is suspended

0xC00 task is currently executing and queued to execute again

0x8002 task is queued to execute after a suspend

0x8004 task is queued to execute after preemption

0xC004 task is queued to execute after preemption, with a resume pend-

ing (will move to 0xC001 rather than 0x0001 when executed)

A TCB is linked to the appropriate singly linked dispatch queue (Section 4.8 on

page 90) when the associated task is scheduled for execution and is removed from the

queue when it is dispatched (begins execution).

When a task is preempted, its registers, including its status register and its program

counter, are saved on its user stack, and the current user stack pointer is saved in the

TCB.

User code must not modify any of the TCB fields.
82 DC 900-2008A

4: System Data Structures
4.2 Queue Control Block (QCB)

The system maintains a 20-byte QCB for each configured exchange queue. QCBs are

arranged as an array of structures, with the queue ID used as an index into the array.

struct QCB_TYPE

{

struct SBH_TYPE *q_head; /* head pointer */

struct SBH_TYPE *q_tail; /* tail pointer */

struct TCB_TYPE *q_owner; /* TCB address of owner */

unsigned short q_count; /* count of queue elements */

unsigned short q_type; /* 0 = single, 1 = double */

unsigned short q_id; /* queue ID */

unsigned short q_filler; /* fill to a longword boundary */

};

The queue head and tail pointers are used to implement either a singly or doubly linked

queue. The count of queue elements is provided as a debugging aid.

The address of the QCB is provided to the caller on return from the Create Queue sys-

tem call. Under controlled circumstances, the information contained in the QCB can be

used by a task or interrupt service routine to examine or manipulate the queue. User

code can modify only the q_head, q_tail, and q_count fields.
DC 900-2008A 83

Freeway OS/Protogate Programmer’s Guide
4.3 Resource Control Block (RCB)

The system maintains a 16-byte RCB for each configured resource. RCBs are arranged

as an array of structures, with the resource ID used as an index into the array. Each RCB

contains the following information:

struct RCB_TYPE

{

struct SBH_TYPE *r_head; /* token/carrier head pointer */

struct SBH_TYPE *r_tail; /* token/carrier tail pointer */

unsigned short r_type; /* 0 = FIFO, 1 = priority */

short r_count; /* count of queue elements */

unsigned short r_state; /* resource state */

unsigned short r_id; /* resource ID */

};

The token/carrier head and tail pointers implement a singly linked queue. When the

count is greater than or equal to zero, it indicates the number of resource tokens avail-

able (linked to the queue). When the count is less than zero, it indicates the number of

outstanding resource requests (the number of carrier messages linked to the queue).

User code must not modify any of the fields of the RCB.
84 DC 900-2008A

4: System Data Structures
4.4 Partition Control Block (PCB)

The system maintains a 28-byte PCB for each configured partition. PCBs are arranged

as an array of structures, with the partition ID used as an index into the array. Each PCB

contains the following information:

struct PCB_TYPE

{

struct SBH_TYPE *p_head; /* free list head pointer */

struct SBH_TYPE *p_tail; /* free list tail pointer */

unsigned int p_start; /* partition starting address */

unsigned int p_end; /* partition ending address + 1 */

unsigned int p_bsize; /* buffer size */

unsigned short p_total; /* total number of buffers */

unsigned short p_count; /* count of buffers on free list */

unsigned short p_id; /* partition ID */

unsigned short p_filler; /* fill to a longword boundary */

};

The free list head and tail pointers implement a singly linked queue. The sb_nxte field

of each buffer header (see Section 4.12 on page 97) is used as a link field while it is

attached to the free list.

When a partition is created during system initialization, all buffers are linked to the free

list. When a buffer is allocated, it is removed from the head of the list. When it is

returned, it is appended to the tail.

User code must not modify any of the fields of the PCB.
DC 900-2008A 85

Freeway OS/Protogate Programmer’s Guide
4.5 Alarm Control Block (ACB)

The system maintains a 28-byte ACB for each configured alarm. ACBs are arranged as

an array of structures, with the alarm ID used as an index into the array. Each ACB con-

tains the following information:

struct ACB_TYPE

{

struct ACB_TYPE *a_flink; /* link to next ACB */

struct ACB_TYPE *a_blink; /* link to previous ACB */

int (*a_sigad)(); /* address of signal routine */

unsigned int *a_flgad; /* address of flag */

unsigned int a_mask; /* mask value for flag */

unsigned short a_type; /* alarm type (see below) */

short a_tick; /* tick count */

unsigned short a_state; /* alarm state (see below) */

unsigned short a_id; /* alarm ID */

};

The a_type field can contain the following values:

0x00 standard

0x01 special

0x80 task

 The a_state field can contain the following values:

0x0000 not allocated

0x8000 or 0x8100 idle

0x80C1 or 0x81C1 just started

0x8081 or 0x8181 running

0x8001 or 0x8101 still queued after a cancel
86 DC 900-2008A

4: System Data Structures
An ACB is linked to the special alarm queue (Section 4.7) when it is started with a Set

Alarm system call (standard or special alarm) or when its associated task is suspended

with a timer set (task alarm). The tick count in an ACB attached to the special alarm

queue is always absolute and is zero if the alarm has been canceled. A special alarm is

removed from the special alarm queue only by the Timer task, either when it finds that

the alarm has been canceled (any type) or when it expires (special alarms only).

Standard and task ACBs are moved to the standard alarm queue (see Section 4.6) from

the special alarm queue by the Timer task. The tick count in an ACB attached to the

standard alarm queue is always relative to the expiration of the timer whose ACB it

immediately follows. An ACB is removed from the standard alarm queue by the Timer

task when it expires or by the system when it is canceled.

If the signal routine address is zero, the Timer task will not make a subroutine call when

the alarm expires. If the flag address or bit mask is zero, the Timer task will not set a flag

when the alarm expires.

While a standard or special alarm is in the idle state (not running), user code can mod-

ify the a_sigad, a_flagad, and a_mask fields of the ACB. While a special alarm is run-

ning, a_tick can be modified, but the accuracy of the alarm’s duration is unpredictable

unless the Timer task is scheduled (with a Resume system call) after modifying the tick

count. User code must not modify the a_tick field of a standard ACB at any time. User

code must not modify any of the fields of a task ACB.
DC 900-2008A 87

Freeway OS/Protogate Programmer’s Guide
4.6 Standard Alarm Queue

The system implements a doubly linked standard alarm queue with a head and tail

pointer, which might contain a linked list of standard and task ACBs. The standard

alarm queue is maintained in an order corresponding to ascending tick counts. The tick

count in each ACB is converted to a relative value when it is inserted into the queue.

That is, the number of ticks remaining for a particular alarm is equal to the sum of the

tick count in its ACB and the tick counts in all preceding ACBs on the queue.

Because tick counts are relative, the Timer task decrements only the tick count in the

ACB at the head of the queue and removes ACBs from the head of the queue as they

expire. When an alarm is canceled, the corresponding ACB can occupy any position in

the queue; therefore, when it is unlinked, the relative tick count in the following ACB

must be adjusted accordingly.

User code must not modify the standard alarm queue head and tail pointers.
88 DC 900-2008A

4: System Data Structures
4.7 Special Alarm Queue

The system implements a singly linked special alarm queue with a head and tail pointer,

which can contain a linked list of ACBs. An ACB is linked to the tail of the special alarm

queue when its associated alarm is started (set) or when its associated task is suspended

with a timer set. When the Timer task executes, it scans the entire special alarm queue.

ACBs with tick counts of zero (canceled) are removed from the queue. Standard and

task ACBs are moved to the standard alarm queue. The tick counts in the ACBs of run-

ning special alarms are decremented, and the ACBs are removed when they have

expired.

User code must not modify the special alarm queue head and tail pointers.
DC 900-2008A 89

Freeway OS/Protogate Programmer’s Guide
4.8 Dispatch Queues

The system maintains a singly linked dispatch queue for each task priority. (The num-

ber of priorities in the system is a configurable parameter.) Each queue consists of a

head and a tail pointer and can contain a linked list of TCBs. When a task is scheduled

to execute, its TCB is linked to the tail of the dispatch queue corresponding to its prior-

ity.

The system selects the next task to be dispatched by checking each dispatch queue in

order of priority. (The queue corresponding to the highest priority in the system is

always checked first.) The TCB at the head of the first non-empty queue is unlinked,

and the associated task is dispatched.

User code must not modify the dispatch queue head and tail pointers.
90 DC 900-2008A

4: System Data Structures
4.9 Configuration Table

When the operating system is initialized at startup, and when it is re-initialized with the

Initialize OS system call, it is configured according to the contents of a system configu-

ration table, the address of which is an input parameter to the Initialize OS system call.

The system does not modify the configuration table and accesses it only during system

initialization.

The system configuration table consists of a list of parameters, described by the 20-byte

CFG_TYPE structure. Also included is a variable-length array of task initialization struc-

tures, each containing the information necessary to create a task (see Section 4.10).

struct CFG_TYPE

{

unsigned short cf_ntsk; /* number of tasks */

unsigned short cf_npri; /* number of priorities */

unsigned short cf_nque; /* number of queues */

unsigned short cf_nlrm; /* number of alarms */

unsigned short cf_npar; /* number of partitions */

unsigned short cf_nrsc; /* number of resources */

unsigned short cf_ltik; /* number of msec per tick */

unsigned short cf_ltsl; /* number of ticks per time slice */

int (*cf_cisr)();/* user clock interrupt */

/* subroutine address */

};
DC 900-2008A 91

Freeway OS/Protogate Programmer’s Guide
struct CONF_TYPE

{

struct CFG_TYPE cfp; /* configurable parameters */

struct TIS_TYPE cft[NUMTIS+1]; /* task initialization structures */

};

The final element in the array cft must specify a task ID (ti_id) of zero to terminate

the list. NUMTIS refers to the number of task initialization structures. The configurable

parameters are used by the system as follows:

cf_ntsk = number of tasks (1– 65535)

The system will create cf_ntsk TCBs and cf_ntsk corresponding task-type ACBs.

Valid task IDs (specified on input to the Create Task system call) are 2 through

cf_ntsk. (Task ID 1 is reserved for the Timer task.)

cf_npri = number of priorities (0 – 65535)

The system creates cf_npri + 1 dispatch queues, corresponding to priorities 0

(highest) through cf_npri (lowest). The Timer task is created by the system at

priority 0. Valid priorities (specified on input to the Create Task system call) are 1

through cf_npri. Any number of tasks can be created at a particular priority.

cf_nque = number of queues (0 – 65535)

The system creates cf_nque QCBs. Valid queue IDs (specified on input to the Cre-

ate Queue system call) are 1 through cf_nque.

cf_nlrm = number of alarms (0 – 65535)

The system creates cf_nlrm ACBs for standard and special alarms. Valid alarm IDs

(specified on input to the Create Alarm system call) are 1 through cf_nlrm.

cf_npar = number of partitions (0 – 65535)

The system creates cf_npar PCBs. Valid partition IDs (specified on input to the

Create Partition system call) are 1 through cf_npar.
92 DC 900-2008A

4: System Data Structures
cf_nrsc = number of resources (0 – 65535)

The system creates cf_nrsc RCBs. Valid resource IDs (specified on input to the

Create Resource system call) are 1 through cf_nrsc.

cf_ltik = length of tick (1 – 65535)

A tick is the unit of time used by the system for alarms and the time slice. The tick

resolution is set to cf_ltik milliseconds.

cf_ltsl = length of time slice (0 – 65535)

The system sets the length of the time slice to cf_ltsl ticks. This parameter can

be set to zero if time slicing will not be enabled for any of the tasks in the system.

cf_cisr = address of user clock interrupt subroutine

If cf_cisr is nonzero, a subroutine call is made to the address cf_cisr on each

interrupt by the system clock (at completion of the system clock interrupt service

routine described in Section 2.5.1 on page 26). This subroutine can perform

hardware-specific functions (such as clearing the interrupt) or any special func-

tions required by the user.

The format of the task initialization structure is defined in Section 4.10. The last task

initialization structure in the configuration table must contain a task ID of zero

(invalid) to terminate the list.
DC 900-2008A 93

Freeway OS/Protogate Programmer’s Guide
4.10 Task Initialization Structure (TIS)

The 16-byte TIS provides the system with the information necessary to create a task.

The address of such a structure must be provided on input to the Create Task system

call, and a list of the structures must immediately follow the configuration table, as

described in Section 4.9. The system does not modify the contents of the structure.

Each task initialization structure contains the following fields:

struct TIS_TYPE

{

unsigned short ti_id; /* task ID */

unsigned short ti_pri; /* task priority */

int (*ti_strt)(); /* entry point address */

unsigned int ti_usp; /* initial user stack pointer */

unsigned short ti_tsen; /* 0 = disable time slicing; */

/* 1 = enable */

unsigned short ti_fill; /* fill to a longword boundary */

};
94 DC 900-2008A

4: System Data Structures
4.11 Event Control Block (ECB)

An ECB can be created by a task and passed as input to the Suspend system call to spec-

ify the conditions under which it should be rescheduled. The system stores the address

of the ECB in the task’s TCB while the task is suspended but does not modify the ECB

in any way.

The ECB is a structure containing four fixed-length fields totaling eight bytes, and a

variable-length array, as follows:

struct ECP_TYPE

{

short e_tick; /* ticks for alarm */

unsigned short e_resm; /* 0 = disable resume; */

/* 1 = enable */

unsigned short e_cps; /* cancel previous scheduling: */

/* 0 = yes, 1 = no */

unsigned short e_filler; /* fill to a longword boundary */

};

struct ECB_TYPE

{

struct ECP_TYPE ecp; /* ECB parameters */

unsigned short e_ques[NUMQID+1]; /* list of queue IDs */

};

If e_tick is set to zero, no alarm is set. The e_resum flag identifies whether the sus-

pended task will be scheduled for execution when a Resume system call is made by

another task in the system. The e_cps flag identifies whether the task’s TCB should be

removed from the dispatch queue if the task is already scheduled to execute at the time

it is suspended. The field e_fill is included to align the list of queue IDs on a longword

boundary.
DC 900-2008A 95

Freeway OS/Protogate Programmer’s Guide
A task can own any number of exchange queues, each of which is identified with a

queue identification. If a particular queue ID is included in the ECB list, a Post &

Resume call specifying that queue causes the suspended task to be scheduled for execu-

tion. A Post & Resume call specifying a queue owned by the task but not included in the

list will succeed but will not cause the task to be scheduled for execution. A queue can-

not be included in the ECB list unless it is owned by the suspending task. NUMQID refers

to the number of queue IDs in the list. The last queue ID is followed by a zero to termi-

nate the list.
96 DC 900-2008A

4: System Data Structures
4.12 System Buffer Header (SBH)

Buffers allocated from partitions, and also elements posted to exchange queues, begin

with a standard 24-byte system buffer header. In general, a queue element can be said to

consist of one or more linked buffers, but this does not imply that the buffers were

obtained from a system partition; any data structure beginning with the required

header can be posted to a queue. Likewise, a buffer allocated from a partition can be

used for any purpose (it is not limited to use as a queue element).

struct SBH_TYPE

{

struct SBH_TYPE *sb_nxte; /* address of next queue */

/* element or buffer */

struct SBH_TYPE *sb_pree; /* address of previous */

 /* queue element */

struct SBH_TYPE *sb_thse; /* address of this queue element */

/* or buffer */

struct SBH_TYPE *sb_nxtb; /* address of next buffer in /*

 /* queue element */

unsigned short sb_pid; /* partition ID */

unsigned short sb_dlen; /* data length */

unsigned short sb_disp; /* disposition flag */

unsigned short sb_dmod; /* disposition modifier */

};

Only certain fields of the buffer header are required or created by the system, and only

during certain operations. Only the buffer header in the first buffer of a queue element

is accessed by the system. The requirements for each of the fields of the system buffer

header are described as follows:

 sb_nxte The system uses this field under two circumstances: (1) while a buffer is

attached to a partition free list, where it contains the address of the next buffer in
DC 900-2008A 97

Freeway OS/Protogate Programmer’s Guide
the list, or (2) while a queue element is attached to a singly or doubly linked

queue, where it contains the address of the next queue element.

sb_pree The system uses this field when a queue element is attached to a doubly linked

queue. It contains the address of the previous queue element.

sb_thse The system uses this field for consistency checks when a buffer or queue ele-

ment is added to or removed from the free list of a partition, or to or from a queue

(singly or doubly linked). It must contain the starting address of the buffer or

queue element. The system sets this field in every buffer of a partition when the

partition is created.

sb_nxtb The system does not access this field. It can be used by applications to link

additional buffers to a queue element.

sb_pid The system sets this field in every buffer of a partition when the partition is cre-

ated. When a buffer is released, this field must contain the ID of its partition.

sb_dlen The system does not access this field. Tasks can use it to specify the length of

valid data in the buffer or the length of the buffer itself.

sb_disp The system does not access this field. In the buffers of queue elements that are

used for intertask communication, it can be used by the sending task to specify

the action that should be taken by the recipient on completion of processing (for

example, release to partition or post to a queue).

sb_dmod The system does not access this field. Tasks can use it to specify further the

action to be taken after processing a buffer (for example, a queue ID).

Tasks are required to maintain (or create) only certain fields of the system buffer header

in a buffer or queue element and only in certain circumstances, as follows:

1. When a buffer is released to a partition, the sb_thse and sb_pid fields must be

valid.
98 DC 900-2008A

4: System Data Structures
2. When a queue element is posted to a singly linked queue, the sb_thse field must

be valid, and the sb_nxte field must be available for use by the system. (These

requirements are for the first buffer of a queue element only.)

3. When a queue element is posted to a doubly linked queue, the sb_thse field must

be valid, and the sb_nxte and sb_pree fields must be available for use by the sys-

tem. (These requirements are for the first buffer of a queue element only.)
DC 900-2008A 99

Freeway OS/Protogate Programmer’s Guide
4.13 Resource Carrier Message

A task can create a resource carrier message and include its address as an optional input

parameter to the Request Resource system call. If the requested resource is not available

at the time the request is made, the system saves the address of the resource carrier mes-

sage, and when the resource becomes available, stores the address of the resource token

in the message and posts it to the specified queue.

The 36-byte resource carrier message is a queue element, and therefore begins with a

standard system buffer header (defined in Section 4.12). The format of the message is

defined as follows:

struct RC_TYPE

{

struct SBH_TYPE rc_sbh; /* system buffer header */

 /* 24 bytes */

unsigned short rc_qid; /* return queue ID */

unsigned short rc_res; /* 0 = resume, */

 /* 1 = post & resume */

unsigned short rc_pri; /* priority */

unsigned short rc_cmp; /* completion code (see below) */

struct SBH_TYPE *rc_tkn; /* address of resource token */

};

When a carrier message is created, the return queue ID must be specified, and the

resume flag must be set to signify whether the system should return the message with a

Post Message or Post & Resume system call. If the requested resource is allocated on a

priority basis (specified when the resource is created), a priority must also be provided.

This priority does not necessarily correspond to the requester’s task priority and is not

limited to the range of task priorities.
100 DC 900-2008A

4: System Data Structures
Before posting the carrier message to the specified queue, the system sets the comple-

tion code. If the resource has been successfully allocated, the system also supplies the

address of the associated resource token.

The rc_cmp field can contain the following values:

0x00 request succeeded (resource has been allocated)

0x01 request canceled

0x02 request failed (resource has been deleted)
DC 900-2008A 101

Freeway OS/Protogate Programmer’s Guide
4.14 Stack Format

When a task is suspended or is preempted, the 68 bytes at the top of the current user

task stack are used to save the values of its data and address registers. The stack pointer

is updated to reflect this register storage, and is saved in the t_stack field of the TCB.

Already on the stack is the exception stack frame (ESF) that was created by the excep-

tion condition that led to the preemption or suspension of the task. The ESF contains

the status register and program counter values that will be restored upon dispatching

the task to run again.

(sp) + 0 saved D0

(sp) + 4 saved D1

.

(sp) + 28 saved D7

(sp) + 32 saved A0

(sp) + 36 saved A1

.

(sp) + 56 saved A6

(sp) + 60 format/vector word in ESF (do not touch!)

(sp) + 62 status register in ESF

(sp) + 64 program counter in ESF

(sp) + 68 Top of task stack upon resuming the task
102 DC 900-2008A

4: System Data Structures
4.15 Global System Table (GST)

The 64-longword (256-byte) GST contains various information that might be useful to

application tasks and also during debugging. In addition, the “gs_unused” portion of

the table can be used by applications to contain counts of errors, global variables, or for

any other purpose. The address of the GST is included in the system address table (see

Section 3.6.2 on page 77).

struct GST_TYPE

{

int (*gs_init) (); /* OS initialization entry address */

unsigned int gs_ticks; /* clock tick count */

unsigned int gs_idle; /* idle task count */

unsigned int gs_ramend; /* first byte of RAM */

/* available to tasks */

char gs_version[4]; /* version number (ASCII) */

unsigned int gs_debug; /* debug code */

unsigned int gs_reserved; /* reserved */

int gs_xerr; /* XIO error code */

unsigned int gs_ports; /* number of serial ports */

/* on the ICP */

unsigned int gs_memsiz; /* number of megabytes of DRAM */

unsigned int gs_memend; /* least upper bound address */

/* after DRAM */

unsigned int gs_unused[53]; /* unused entries */

/* (available to users) */

};

The clock tick count is incremented by the clock interrupt service routine on each tick.

The idle task count is incremented each time OS/Protogate’s internal idle task is entered

(i.e., whenever the current task is suspended and no other task is scheduled for execu-

tion. The version number is four bytes: a ‘V’ followed by the three ASCII digits of the
DC 900-2008A 103

Freeway OS/Protogate Programmer’s Guide
OS version (e.g., “V100” for 1.0-0). The debug codes are defined in Section A.1 on

page 105. The XIO error code is deposited for post-mortem purposes when OS/Proto-

gate’s Executive I/O encounters a fatal error.
104 DC 900-2008A

Appendix
A Debugging Aids
This appendix describes the facilities that have been incorporated into the operating

system to assist programmers in debugging application programs.

A.1 Global System Table

The GST is defined in Section 4.15 on page 103. Several of the fields in the table might

be of interest while debugging an application. If the clock tick count is not incremented,

or increases more slowly than expected (depending on the tick length configured),

interrupts might be erroneously disabled, or a higher-priority interrupt might be “hog-

ging” processor time. The idle count can be monitored to give a rough estimate of sys-

tem load. (However, if one or more tasks in the system execute continuously without

suspending, the idle count will never be incremented.)

During normal system operation the debug code in the gs_debug field signifies the level

of input parameter and consistency checking that will be performed by the system, as

follows:

0x00000000 input parameter and consistency checking enabled

0x01000000 input parameter checking enabled; consistency checking

disabled

0x02000000 input parameter and consistency checks disabled
DC 900-2008A 105

Freeway OS/Protogate Programmer’s Guide
When a consistency check fails, the system stores a code identifying the error in the

gs_debug field and “panics” with an illegal instruction trap. These error codes are

defined in Section A.1.1.

When an input parameter check fails in a system call, an error is returned, as defined for

each system call in Chapter 3; however, when input parameter checking is disabled, the

system routines return no errors except those listed in Table A–1.

Input parameter and consistency checks are conditionally assembled in order to

improve system performance; therefore, the level of checking enabled is determined

when the operating system is assembled and cannot be changed dynamically or through

system reconfiguration.

A.1.1 Panic Codes

When consistency checking is enabled and an error is detected, the system routine

detecting the error stores an identifying code in the gs_debug field of the GST and

branches to a “panic” location, which contains an illegal instruction. Execution of this

instruction generates an illegal instruction trap. Each of the error codes is listed as fol-

lows. Also included are the system calls during which it can occur, any register values

that might be of assistance in evaluating the cause of the error, and the offset on the

supervisor stack at which the caller’s return address is located.

Table A–1: System Errors

System Call Error Code Description

s_qdelet 0x02 queue is not empty

s_accpt 0xFF queue is empty

s_rreq 0xFF no resource tokens available

s_pdelet 0x02 one or more buffers currently allocated

s_breq 0xFF no buffers available
106DC 900-2008A

A: Debugging Aids
As part of consistency checking, when a partition is created, the sb_pree field of each

buffer is set to the value 0xF5F5F5F5. When a buffer is allocated, the field is set to zero.

When a buffer is released, the field is again set to 0xF5F5F5F5. The sb_pree field of all

buffers on the free list of a partition, therefore, is expected to contain this value, and the

same field of allocated buffers is assumed to contain any other value. Error codes 0x09

and 0x10 are related to these consistency checks.

gs_debug 0x01

system calls: s_tdelet, s_susp

description: The TCB state (t_state) indicates that the TCB is scheduled for

execution, but it was not found on the dispatch queue for its prior-

ity. This error suggests a corruption of the system.

registers: A0.L = TCB address

return address: sp + 34

gs_debug 0x02

system calls: s_tdelet

description: The ACB state (a_state) indicates that the task’s ACB is queued

(after being canceled), but it was not found on the special alarm

queue. This error suggests a corruption of the ACB or the system in

general.

registers: A0.L = task’s ACB address (the alarm ID in the ACB is

 equivalent to the task ID)

A2.L = address of special alarm queue head

return address sp + 14
DC 900-2008A 107

Freeway OS/Protogate Programmer’s Guide
gs_debug: 0x03

system calls: s_osinit

description: An error was returned from s_tcreat when attempting to create the

Timer task or a task listed in the configuration table. This error

indicates a badly formatted task initialization structure or a dupli-

cated or out-of-range task ID.

registers: D0.L = error code returned from s_tcreat

A0.L = task initialization structure address

return address: not available (stack has been reinitialized)

gs_debug: 0x04

system calls: s_accpt

description: The sb_thse field of the element obtained from the queue is invalid.

This error indicates that data within the queue element, or links

between queue elements, might have been corrupted.

registers A0.L = queue element address

A1.L = QCB address

return address: sp + 22

gs_debug: 0x05

system calls: s_breq

description: The sb_thse field of the element obtained from the partition is

invalid. This error suggests that data within the buffer has been cor-

rupted while the buffer was attached to the free list. For example,

data might have been written past the end of the preceding (adja-

cent) buffer, or the links of the free list might have been corrupted.

registers: A0.L = buffer address

A1.L = PCB address

return address sp + 22
108DC 900-2008A

A: Debugging Aids
gs_debug: 0x06

system calls: s_breq

description: The partition ID in the buffer does not match the ID of the parti-

tion from which it was obtained. This error suggests that data

within the buffer has been corrupted while the buffer was attached

to the free list (see error code 0x05).

registers: A0.L = buffer address

A1.L = PCB address

return address: sp + 22

gs_debug: 0x07

system calls: s_tcreat, s_resum, s_postr

description: The system is attempting to schedule a task that is in the terminated

state. This error indicates corruption of the TCB or the system in

general. It might also occur during a task switch or during process-

ing of the expiration of a suspended task’s alarm.

registers: A3.L = TCB address

return address sp + 26 or sp + 30 (not applicable if the error is not related to a sys-

tem call)

gs_debug: 0x08

system calls: s_brel

description: The number of buffers on the free list of the partition is already

equal to the total number of buffers in the partition. This error sug-

gests that the free list of the partition or the PCB itself has been cor-

rupted.

registers: A0.L = buffer address

A1.L = PCB address

D0.W = current count of buffers on free list

return address sp + 26
DC 900-2008A 109

Freeway OS/Protogate Programmer’s Guide
gs_debug: 0x09

system calls: s_breq

description: The value of the sb_pree field of the buffer obtained from the parti-

tion is not equal to the value 0xF5F5F5F5. This error might suggest

(1) that data within the buffer has been corrupted while the buffer

was attached to the free list (see error code 0x05 above), (2) that the

buffer remained in use by an application after being released to the

partition’s free list, or (3) that the links of the free list have been

corrupted.

registers: A0.L = buffer address

A1.L = PCB address

return address: sp + 22

gs_debug: 0x0A

system calls: s_brel

description: The value of the sb_pree field of the buffer to be released to the par-

tition is equal to the value 0xF5F5F5F5, signifying that it is already

linked to the free list. This error indicates that the application might

be attempting to release a buffer that has already been released.

registers: A0.L = buffer address

return address sp + 26

gs_debug: 0x0B

system calls: s_accpt

description: The queue head pointer is equal to zero, indicating that the queue is

empty, but the count of queue elements is nonzero. This error sug-

gests corruption of the QCB.

registers: A1.L = QCB address

return address: sp + 22
110DC 900-2008A

A: Debugging Aids
gs_debug: 0x0C

system calls: s_accpt

description: The queue head pointer is nonzero, signifying that the queue is not

empty, but the count of queue elements was zero (and has now

been decremented to –1). This error suggests corruption of the

QCB.

registers: A1.L = QCB address

return address: sp + 22

gs_debug: 0x0D

system calls: s_adelet

description: The ACB state (a_state) signifies that the ACB is queued (running

or canceled), but it was not found on the special alarm queue. This

error suggests a corruption of the ACB or the system in general.

registers: A0.L = ACB address

A2.L = address of special alarm queue head

return address: sp + 26

gs_debug: 0x0E

system calls: s_rdelet

description: The sb_thse field of a token message obtained from the RCB queue

is invalid. This error suggests corruption of the RCB queue.

registers: A0.L = token message address

A1.L = RCB address

return address: sp + 26
DC 900-2008A 111

Freeway OS/Protogate Programmer’s Guide
gs_debug: 0x0F

system calls: s_rdelet

description: A call to s_post failed (attempting to post a token message to the

specified queue). This error suggests that an invalid queue ID was

supplied.

registers: D0.L = completion status returned from s_post

D1.L = queue

A0.L = token message address

A1.L = RCB address

return address: sp + 26

gs_debug: 0x10

system calls: s_rdelet

description: The sb_thse field of a carrier message obtained from the RCB

queue is invalid. This error suggests corruption of the RCB queue.

registers: A0.L = carrier message address

A1.L = RCB address

return address: sp + 26

gs_debug: 0x11

system calls: s_rdelet, s_rcan, s_rrel

description: A call to s_post or s_postr failed (attempting to post carrier mes-

sage to the specified queue). This error suggests that the queue ID

in the carrier message is no longer valid.

registers: D0.L = completion status returned by s_post or s_postr

D1.L = queue ID

A0.L = carrier message address

A1.L = RCB address

return address sp + 34 or sp + 38
112DC 900-2008A

A: Debugging Aids
gs_debug: 0x12

system calls: s_rreq

description: The sb_thse field of the token message obtained from the RCB

queue is invalid. This error suggests corruption of the RCB queue.

registers: A0.L = token message address

A1.L = RCB address

return address: sp + 26

gs_debug: 0x13

system calls: s_rcan

description: The sb_thse field of the canceled carrier message (obtained from

the RCB queue) is invalid. This error suggests corruption of the

RCB queue.

registers: A0.L = carrier message address

A1.L = RCB address

return address: sp + 22

gs_debug: 0x14

system calls: s_rrel

description: The sb_thse field of the carrier message obtained from the RCB

queue is invalid. This error suggests corruption of the RCB queue.

registers: A0.L = carrier message address

A1.L = RCB address (Token message address is at top of stack)

return address: sp + 30
DC 900-2008A 113

Freeway OS/Protogate Programmer’s Guide
gs_debug: 0x15

system calls: —

description: The function code in register D0, which should identify the system

call, is invalid.

registers: D0.L = function code

return address: sp + 6 or sp + 10

gs_debug: 0x16

system calls: s_tcreat, s_resum, s_postr

description: The system is attempting to add a TCB to a dispatch queue when

the TCB is already linked to the queue. This error indicates corrup-

tion of the system. It might also occur during a task switch or dur-

ing processing of the expiration of a suspended task’s alarm.

registers: A1.L = address of dispatch queue tail

A3.L = TCB address

return address: sp + 26 or sp + 30 (not applicable if the error is not related to a sys-

tem call)

gs_debug: 0x17

system calls: s_tdelet, s_susp

description: The call has been made from supervisor state (for example, an

interrupt service routine). These calls are valid from the task level

only.

return address: sp + 14 (s_tdelet) or sp + 10 (s_susp)
114DC 900-2008A

A: Debugging Aids
A.2 System Variables

System variables that might help you determine the state of a task, queue, alarm, parti-

tion, or resource immediately follow the GST. The GST contains 64 longwords, or 100

hexadecimal bytes. The system variables described in Table A–2 through Table A–4

begin at an address identified by the GST plus 10016. They are defined in terms of offsets

from that location.

A.2.1 Pointers to Control Structures

Each variable in Table A–2 contains the address of the first control structure of its kind,,

beginning at offset 0016 past the GST. To locate the control structure corresponding to a

particular ID, subtract one from the ID, multiply it by the length of the structure, and

add the result to the address of the first structure.

Table A–2: Control Structures

Offset
(hex) Variable Size Description

0 tcbs L Contains the address of the first TCB
(TCB length = 28 bytes)

4 qcbs L Contains the address of the first QCB
(QCB length = 20 bytes)

8 acbs L Contains the address of the first regular
(standard or special) ACB
(ACB length = 28 bytes)

C tacbs L Contains the address of the first task ACB
(ACB length = 28 bytes)

10 pcbs L Contains the address of the first PCB
(PCB length = 28 bytes)

14 rcbs L Contains the address of the first RCB
(RCB length = 16 bytes)

18 --- L (unused)

1C --- L (unused)
DC 900-2008A 115

Freeway OS/Protogate Programmer’s Guide
A.2.2 Alarm Queues

Table A–3 shows the alarm queues, beginning at offset 2016 past the GST.

A.2.3 Task Execution Variables

Table A–4 shows the task execution data, starting at offset 3016 past the GST. To deter-

mine the dispatch queue head and tail pointers for a particular priority, multiply the

priority by four and add the result to the addresses of the first head and tail pointers.

Table A–3: Alarm Queues

Offset
(hex) Variable Size Description

20 tq_head L Contains the address of the first ACB on the standard
alarm queue, or zero if the queue is empty

24 tq_tail L Contains the address of the last ACB on the standard
alarm queue, and is undefined if the queue is empty

28 aq_head L Contains the address of the first ACB on the special alarm
queue, or zero if the queue is empty

2C aq_tail L Contains the address of the last ACB on the special alarm
queue, and is undefined if the queue is empty

Table A–4: Task Execution Variables

Offset
(hex) Variable Size Description

30 dq_heads L Contains address of the first dispatch queue head pointer

34 dq_tails L Contains address of the first dispatch queue tail pointer

38 curtsk L Contains the TCB address of the currently executing task

3C curpri L Contains the priority of the currently executing task

40 tlock L Equal to zero if task rescheduling is enabled, equal to one
if task rescheduling is disabled

44 tswitch L Bit 15 is set if a task switch is pending; bit 0 (lowest) is set
if no state save is required at the next task switch
116DC 900-2008A

Appendix
B Data Structure Field Offsets
The following tables show more precise definitions of the data structures defined with

C structures in Chapter 4. Here, each field is described by its offset from the start of the

structure and its size in bytes. When C or any other high-level language is used to define

these structures, the user should verify that the resulting field offsets correspond to

those provided in this appendix.

The number of dispatch queues (Table B–8 on page 120) is dependent on the number

of configured task priorities. This data structure is defined with an example showing the

dispatch queues for a system with four priorities. The end_marker field contains a

unique value that identifies the end of the list of dispatch queue heads. (Each queue

head contains either a TCB address or zero if the queue is empty.)

The configuration table, defined in Table B–9 on page 120, includes a variable number

of TISs (Table B–10 on page 121). The structure is defined with an example showing a

configuration table with two task initialization structures (TIS 1 and TIS 2), followed by

a zero to terminate the list. (A configuration table with no task initialization structures

would contain a zero immediately following the cf_cisr field.)

The event control block, defined in Table B–11 on page 121, includes a variable-length

list of queue IDs. As an example, the table shows an ECB with two queue IDs (QID 1

and QID 2), followed by a zero to terminate the list. (An ECB with no queue IDs would

contain a zero immediately following the e_fill field.)

All other data structures are of fixed length.
DC 900-2008A 117

Freeway OS/Protogate Programmer’s Guide
Table B–1: Task Control Block (TCB)

Offset (hex) Field Name Size (hex bytes)

0 t_next 4

4 t_id 2

6 t_pri 2

8 t_slice 2

A t_state 2

C t_stack 4

10 t_ecb 4

14 t_acb 4

18 t_event 4

Table B–2: Queue Control Block (QCB)

Offset (hex) Field Name Size (hex bytes)

0 q_head 4

4 q_tail 4

8 q_owner 4

C q_count 2

E q_type 2

10 q_id 2

12 q_filler 2

Table B–3: Resource Control Block (RCB)

Offset (hex) Field Name Size (hex bytes)

0 r_head 4

4 r_tail 4

8 r_type 2

A r_count 2

C r_state 2

E r_id 2
118 DC 900-2008A

B: Data Structure Field Offsets
Table B–4: Partition Control Block (PCB)

Offset (hex) Field Name Size (hex bytes)

0 p_head 4

4 p_tail 4

8 p_start 4

C p_end 4

10 p_bsize 4

14 p_total 2

16 p_count 2

18 p_id 2

1A p_filler 2

Table B–5: Alarm Control Block (ACB)

Offset (hex) Field Name Size (hex bytes)

0 a_flink 4

4 a_blink 4

8 a_sigad 4

C a_flagad 4

0 a_mask 4

14 a_type 2

16 a_tick 2

18 a_state 2

1A a_id 2

Table B–6: Standard Alarm Queue

Offset (hex) Field Name Size (hex bytes)

0 tq_head 4

4 tq_tail 4
DC 900-2008A 119

Freeway OS/Protogate Programmer’s Guide
Table B–7: Special Alarm Queue

Offset (hex) Field Name Size (hex bytes)

0 aq_head 4

4 aq_tail 4

Table B–8: Dispatch Queues

Offset (hex) Field Name Size (hex bytes)

0 dq_head 0 4

4 dq_head 1 4

8 dq_head 2 4

C dq_head 3 4

10 (end_marker) 4

14 dq_tail 0 4

18 dq_tail 1 4

1C dq_tail 2 4

20 dq_tail 3 4

Table B–9: Configuration Table

Offset (hex) Field Name Size (hex bytes)

0 cf_ntask 2

2 cf_nprior 2

4 cf_nque 2

6 cf_nalarm 2

8 cf_npart 2

A cf_nresrc 2

C cf_ltick 2

E cf_lslice 2

10 cf_cisr 4

14 TIS 1 10

24 TIS 2 10

34 (zero) 2
120 DC 900-2008A

B: Data Structure Field Offsets
Table B–10: Task Initialization Structure (TIS)

Offset (hex) Field Name Size (hex bytes)

0 ti_id 2

2 ti_pri 2

4 ti_start 4

8 ti_usp 4

C ti_tsen 2

E ti_filler 2

Table B–11: Event Control Block (ECB)

Offset (hex) Field Name Size (hex bytes)

0 e_tick 2

2 e_resum 2

4 e_cps 2

6 e_filler 2

8 QID 1 2

A QID 2 2

C (zero) 2

Table B–12: System Buffer Header (SBH)

Offset (hex) Field Name Size (hex bytes)

0 sb_nxte 4

4 sb_pree 4

8 sb_thse 4

C sb_nxtb 4

10 sb_pid 2

12 sb_dlen 2

14 sb_disp 2

16 sb_dmod 2
DC 900-2008A 121

Freeway OS/Protogate Programmer’s Guide
Table B–13: Resource Carrier Message

Offset (hex) Field Name Size (hex bytes)

0 SBH 18

18 rc_qid 2

1A rc_resum 2

1C rc_pri 2

1E rc_comp 2

20 rc_token 4

Table B–14: Global System Table (GST)

Offset (hex) Field Name Size (hex bytes)

0 gs_init 4

4 gs_ticks 4

8 gs_idle 4

C gs_ramend 4

10 gs_version 4

14 gs_debug 4

14 gs_reserved 4

14 gs_xerr 4

14 gs_ports 4

14 gs_memsiz 4

14 gs_memend 4

18 gs_unused D4
122 DC 900-2008A

Appendix
C System Call Summaries
This appendix provides quick-reference tables showing summaries of the system call

parameters for C and assembly language interfaces. Table C–1 shows the C interface.

Table C–2 shows the assembly language interface.
DC 900-2008A 123

Freeway OS/Protogate Programmer’s Guide
Note: A completion code is returned from most routines, not shown in this table. See Chapter 3.

Table C–1: C Interface System Call Summary

Operation C System Call

Create a task s_tcreat (tis)

Delete calling task s_tdelet ()

Disable task rescheduling s_lock ()

Enable task rescheduling s_ulock ()

Suspend calling task s_susp (ecb, event_code)

Resume a task s_resum (task_id)

Create a queue s_qcreat (queue_id, q_type, task_id, qcb)

Delete a queue s_qdelet (queue_id)

Post a message to a queue s_post (queue_id, head_tail, message)

Post a message and resume
queue owner

s_postr (queue_id, head_tail, message)

Accept a message from a queue s_accpt (queue_id, message)

Create a resource s_rcreat (res_id, res_type)

Delete a resource s_rdelet (res_id, queue_id)

Request a resource s_rreq (res_id, carrier, token)

Cancel a resource request s_rcan (res_id, carrier)

Release a resource s_rrel (res_id, token)

Create a partition s_pcreat (part_id, buffer_size, start_addr, end_addr, pcb)

Delete a partition s_pdelet (part_id)

Request a buffer s_breq (part_id, buffer)

Release a buffer s_brel (buffer)

Create an alarm s_acreat (alarm_id, alarm_type, mask, signal, flag, acb)

Delete an alarm s_adele (alarm_id)

Set an alarm s_aset (alarm_id, ticks)

Cancel an alarm s_acan (alarm_id)

Initialize OS s_osinit (config)

Get system address table s_getsat ()

Return from ISR s_iret ()

Set interrupt level s_iset (mask)
124 DC 900-2008A

C: System Call Summaries
Table C–2: Assembly Interface System Call Summary

Operation

Assembly System Call

I/O

Register

D0 D1 D2 D3 A0 A1

Create a task input 0x00 tis

Delete calling task input 0x01

Disable task rescheduling input 0x02

Enable task rescheduling input 0x03

Suspend calling task input 0x04 ecb

output event

Resume a task input 0x06 task_id

Create a queue input 0x07 que_id type tsk_id

output qcb

Delete a queue input 0x08 que_id

Post message to queue input 0x09 que_id hd_tail msg

Post message and resume
queue owner

input 0x0A que_id hd_tail msg

Accept message from
queue

input 0x0B que_id

output msg

Create a resource input 0x0C res_id type

Delete a resource input 0x0D res_id que_id

Request a resource input 0x0E res_id carrier

output token

Cancel resource request input 0x0F res_id carrier

Release a resource input 0x10 res_id token

Create a partition input 0x11 par_id size start end

Delete a partition input 0x12 par_id

Request a buffer input 0x13 par_id

output buffer

Release a buffer input 0x14 buffer

Create an alarm input 0x15 alr_id type mask signal flag

output acb

Delete an alarm input 0x16 alr_id

Set an alarm input 0x17 alr_id ticks

Cancel an alarm input 0x18 alr_id

Initialize OS input 0x19 config

Get system address table input 0x1A

output table
DC 900-2008A 125

Freeway OS/Protogate Programmer’s Guide
Notes: All routines are accessed with TRAP #0 unless otherwise noted.
Most routines return completion status in register d0, not shown in this table.
See Chapter 3 for details.

Return from ISR -- TRAP #1 --

Set interrupt level input new_mask -- TRAP #2 --

output old_mask

Table C–2: Assembly Interface System Call Summary

Operation

Assembly System Call

I/O

Register

D0 D1 D2 D3 A0 A1
126 DC 900-2008A

Appendix
D Task Scheduling Examples
This appendix provides some examples of task scheduling. For these examples, assume

that the system consists of the following tasks:

Example 1

1. Task B is currently executing and no tasks are scheduled for execution.

2. Task B makes a Resume system call to schedule task C. Task C is added to the dis-

patch queue, but is not dispatched because it is at the same priority as task B. (If

time slicing were enabled for task B, task C would be dispatched at this point.)

3. Task B suspends and task C is dispatched.

Example 2

1. Task A is suspended, task B is currently executing and task C is scheduled for exe-

cution.

2. Task B makes a Post & Resume system call to a queue owned by task A, causing

task A to be scheduled. Since task A is higher priority, task B is preempted at com-

Table D-1:

Task Priority Time Slicing

A 1 disabled

B 2 disabled

C 2 disabled
DC 900-2008A 127

Freeway OS/Protogate Programmer’s Guide
pletion of the system call and task A is dispatched. The preempted task is added to

the tail of the dispatch queue for its priority. (Task C is at the head of that queue.)

3. Task A suspends and task C is dispatched.

4. Task C suspends and task B is dispatched, continuing execution at the return from

the Post & Resume call to task A’s queue.

Example 3

1. Tasks A and C are suspended and task B is currently executing. Task B owns a

queue. It has checked this queue, and finding it empty, is preparing to suspend

until awakened by a Post & Resume call to the queue.

2. An interrupt occurs before task B suspends. The interrupt service routine (ISR)

makes a Resume system call to schedule task A. At completion of the ISR, task B

is preempted, added to the dispatch queue for its priority, and task A is dis-

patched.

3. During task A’s execution, it makes a Post & Resume call to task B’s queue. Task B

is already scheduled for execution, but a special “resume pending” bit is set in its

state. (See Section 4.1 on page 81.)

4. When task A suspends, task B is dispatched, continuing execution at the point of

interrupt (Step 2). At the time of dispatch, task B is again added to the tail of the

dispatch queue for its priority because of the “resume pending” flag.

5. Not realizing that the interrupt and subsequent preemption occurred, task B pro-

ceeds to suspend, waiting for a post to its queue. Task B does not specify “cancel

previous scheduling” in its event control block (see the note below).

6. Task B, having been rescheduled during dispatch (Step 4) is dispatched again and

finds the queue element that was posted during task A’s execution (Step 3).
128 DC 900-2008A

D: Task Scheduling Examples
Note
In most cases when a task suspends, it expects to be scheduled by

an asynchronous event — by another task or from an interrupt

service routine. In these cases, “cancel previous scheduling” should

never be specified in the event control block (ECB). Use of this flag

is recommended only in the case of a task that suspends for some

number of ticks, with expiration of that alarm being the only event

that is to cause the task to be scheduled. In this special case, “dis-

able resume” should also be specified in the ECB.
DC 900-2008A 129

Freeway OS/Protogate Programmer’s Guide
130 DC 900-2008A

Glossary of Acronyms
ACB alarm control block

API application program interface

ECB event control block

FIFO first in, first out

ICP intelligent communications processor

ISR interrupt service routine

GST global system table

LAN local-area network

LIFO last in, first out

PCB partition control block

QCB queue control block

RCB resource control block

RTE return from exception

SBH system buffer header

SNMP simple network management protocol
DC 900-2008A 131

Freeway OS/Protogate Programmer’s Guide
TCB task control block

TCP/IP transmission control protocol/internet protocol

TIS task initialization structure

WAN wide-area network
132 DC 900-2008A

Index
A

Alarm control block (ACB) 27, 67, 86, 119
Alarm queue 116

special 89
standard 88

Alarm-related calls 67
cancel an alarm (s_acan) 74
create an alarm (s_acreat) 68
delete an alarm (s_adelet) 71
set an alarm (s_aset) 72

Alarms 27
special 27
standard 27

Audience 11

C

Configuration table 91, 120
Customer support 14

D

Data structures 81
alarm control block (ACB) 86, 119
configuration table 91, 120
dispatch queues 90, 120
event control block (ECB) 95, 121
field offsets 117
global system table (GST) 103, 122
partition control block (PCB) 85, 119
queue control block (QCB) 83, 118
resource carrier message 100, 122
resource control block (RCB) 84, 118
special alarm queue 89, 120
stack format 102
standard alarm queue 88, 119
system buffer header (SBH) 97, 121
DC 900-2008A
task control block (TCB) 81, 118
task initialization structure (TIS) 94, 121

Debugging aids 105
global system table (GST) 105
panic codes 106
system variables 115

Dispatch queues 90
Documents

reference 12

E

Ethernet 17
Event control block (ECB) 39, 95, 121, 128, 129
Examples of task scheduling 127

F

Features
Freeway 17

Freeway
features 17
overview 15

G

Global system table (GST) 103, 105, 106, 122
Glossary of acronyms 131

I

Interrupt service routine (ISR) 26, 128

L

LAN interface processor 15

M

Memory
133

Freeway OS/Protogate Programmer’s Guide
allocation 24
partitions 25
stacks 24

Miscellaneous system calls 75
get system address table (s_getsat) 77
initialize OS (s_osinit) 76
return from ISR (s_iret) 78
set interrupt level (s_iset) 79

O

Operation, principles of 21
OS/Protogate 15

overview 18
Overview 15

Freeway 15
OS/Protogate 18

P

Panic codes 106
Partition control block (PCB) 25, 61, 85, 119
Partition-related calls 61

create a partition (s_pcreat) 62
delete a partition (s_pdelet) 64
release a buffer (s_brel) 66
request a buffer (s_breq) 65

Preface 11
Product

support 14

Q

Queue control block (QCB) 23, 42, 83, 118
Queue-related calls 42

accept message from queue (s_accpt) 50
create a queue (s_qcreat) 43
delete a queue (s_qdelet) 45
post message and resume (s_postr) 48
post message to queue (s_post) 46

Queues
alarm 116
dispatch 39, 82, 90, 95, 120, 127, 128
doubly linked 23
exchange 23, 39, 42, 83, 96
singly linked 22
special alarm 89, 120
standard alarm 88, 119
134
R

Reference documents 12
Resource carrier message 29, 51, 100, 122
Resource control block (RCB) 28, 51, 84, 118
Resource management 28
Resource token 28, 51
Resource-related calls 51

cancel a resource request (s_rcan) 57
create a resource (s_rcreat) 52
delete a resource (s_rdelet) 54
release a resource (s_rrel) 59
request a resource (s_rreq) 55

rlogin 17

S

Scheduling 21
Scheduling tasks

examples 127
Server processor 15
SNMP 17
Special alarm queue 89
Stacks 24

format 102
Standard alarm queue 88
Support, product 14
System buffer header (SBH) 22, 46, 97, 121
System calls 31

See also Alarm-related calls, Miscellaneous sys-
tem calls, Partition-related calls, Queue-
related calls, and Resource-related calls

summaries 123
assembly interface 125
C interface 124

System data structures
See Data structures

System errors 106
System variables 115

alarm queues 116
control structures 115
task execution 116

T

Task control block (TCB) 22, 81, 118
Task execution variables 116
Task initialization structure (TIS) 94, 121
DC 900-2008A

Index
Task scheduling examples 127
Task-related calls 32

create a task (s_tcreat) 34
delete calling task (s_tdelet) 36
disable task rescheduling (s_lock) 37
enable task rescheduling (s_ulock) 38
resume a task (s_resum) 41
suspend calling task (s_susp) 39

Tasks 22
TCP/IP 17
Technical support 14
telnet 17
Timers 25

alarms 27
interrupt service routine 26
timer task 26

V

VxWorks 15

W

WAN interface processor 15
DC 900-2008A
 135

Freeway OS/Protogate Programmer’s Guide
136
 DC 900-2008A

Customer Service
Freeway OS/Protogate Programmer’s Guide

DC 900-2008A

PROTOGATE
Customer Report Form

We are constantly improving our products. If you have suggestions or problems you would

like to report regarding the hardware, software or documentation, please complete this form

and mail it to Protogate at 12225 World Trade Drive, Suite R, San Diego, CA 92128, or fax it

to (877)473-0190

If you are reporting errors in the documentation, please enter the section and page number.

Your Name:

Company:

Address:

Phone Number:

Product:

Problem or

Suggestion:

FM 100-0026A

Protogate, Inc.
Customer Service

12225 World Trade Drive, Suite R
San Diego, CA 92128

	Freeway™ OS/Protogate Programmer’s Guide
	DC�900-2008A
	June 2002

	Preliminary June 11, 2002
	Contents
	Preface 11
	1 Overview 15
	2 Principles of Operation 21
	3 System Calls 31
	4 System Data Structures 81
	A Debugging Aids 105
	B Data Structure Field Offsets 117
	C System Call Summaries 123
	D Task Scheduling Examples 127
	Glossary of Acronyms 131
	Index 133
	List of Figures
	List of Tables

	Preface
	Purpose of Document
	This document provides a complete description of the programmer’s interface to OS/Protogate, Prot...
	Intended Audience

	This document should be read by programmers who are developing code that will be downloaded to a ...
	Required Equipment

	You will need OS/Protogate in executable form and a Freeway product based on Motorola’s ColdFire®...
	Organization of Document

	Chapter�1 provides an overview of �Freeway and OS/Protogate.
	Chapter�2 introduces the components of OS/Protogate and provides a general description of its sys...
	Chapter�3 contains the OS/Protogate system calls. Each section describes a system call in detail ...
	Chapter�4 describes the system data structures used internally by OS/Protogate and those used by ...
	Appendix�A provides information for debugging software that executes in the OS/Protogate environm...
	Appendix�B explicitly defines the system data structures in terms of field sizes and byte offsets.
	Appendix�C provides one-page system-call summaries for C and assembly language interfaces.
	Appendix�D provides some examples of task scheduling.
	The Glossary of Acronyms lists the acronyms used in this manual.
	References�

	Freeway general support:
	DC�900�2002
	DC�900�2003
	DC�900�2004
	DC�900-2005
	25�000�0374
	DC�900�1333
	Freeway programming support:
	DC�900�1303
	DC�900�1334
	DC�900�2008
	DC�900�1335
	DC�900�2006

	Freeway protocol support:
	DC�900�1317
	DC�900�1324
	DC�900�1340
	DC�900�1339
	DC�900�1352
	DC�900�1338
	DC�900�1344
	DC�900�1307

	Customer Support

	If you are having trouble with any Protogate product, call us at (858) 451-0865 Monday through Fr...
	You can also fax your questions to us at (877) 473�0190 any time. Please include a cover sheet ad...
	We are always interested in suggestions for improving our products. You can use the report form i...

	1 Overview
	1.1� Freeway Overview
	Protogate’s �Freeway communications servers enable client applications on a local-area network (L...
	Figure 1–1:� �Freeway Configuration

	To maintain high data throughput, the �Freeway Server uses a multi-processor architecture to supp...
	The �Freeway Server can be configured with multiple WAN interface processor boards, each of which...
	Summary of �Freeway features:�

	1.2� OS/Protogate Overview
	The operating system that runs on the ICP is Protogate’s OS/Protogate real-time executive, which ...
	OS/Protogate is a real-time operating system kernel designed for Motorola’s ColdFire® family of p...
	The following system components are defined:
	The system environment is completely configurable and dynamic: the maximum number of each compone...
	OS/Protogate includes 30 system service routines, which are accessed through the exception vector...
	As an operating system kernel, OS/Protogate is only one part of what might be considered a comple...

	2 Principles of Operation
	2.1� System Scheduling
	In a multi-tasking operating system, processes execute logically in parallel. In actuality, only ...
	1. The task that is executing is suspended (preempted) when:
	2. When one of these events occurs, tasks are rescheduled. At this time, the task to be dispatche...
	3. A task is scheduled to execute when it is created (by another task with the Create Task system...
	4. Of the tasks that are scheduled to execute, the system always dispatches the task with the hig...

	2.2� Tasks
	The maximum number of tasks in the system is configurable at system initialization. For each conf...

	2.3� Queues
	As defined for this operating system, a queue is a linked list which can contain any number of qu...
	2.3.1� Singly Linked Queues

	A singly linked queue consists of a head pointer, a tail pointer and the “next element” field in ...
	2.3.2� Doubly Linked Queues

	A doubly linked queue consists of a head pointer, a tail pointer, and the “next element” and “pre...
	2.3.3� Exchange Queues

	The operating system uses both singly and doubly linked queues for various purposes internally an...
	The number of exchange queues created by the system during its initialization is a configurable p...
	A task can own any number of exchange queues, which are obtained and released by means of the Cre...
	Any task can post a message (add an element) to or accept a message (remove an element) from an e...
	2.3.4� Queue Ordering

	In general, exchange queues, whether singly or doubly linked, are intended to be managed as FIFOs...
	Double links allow elements to be easily inserted or deleted at any position of a queue. This can...

	2.4� Memory Allocation
	The operating system requires a fixed amount of memory for code, data, and stack, and also a vari...
	2.4.1� Stacks

	The Motorola ColdFire® processor used by OS/Protogate platforms provides a single hardware stack ...
	When any task is dispatched, its saved stack pointer value is stored in the hardware stack pointe...
	When a task is not running, the latest 66 bytes of its stack are occupied by the saved values of ...
	2.4.2� Partitions

	A partition is a block of memory that is subdivided into buffers of a particular size. The maximu...
	The system maintains a partition control block (PCB) for each configured partition. The format of...

	2.5� Timer Services
	Timer services are based on the accumulation of system ticks. Ticks are intervals of time, expres...
	1. A task can suspend with a timer set (sleep) for some number of ticks, after which it is schedu...
	2. A task can set an alarm for some number of ticks; when the timer expires, it can set a flag an...
	3. If time slicing is enabled for a task, its execution is suspended after the time slice period ...
	2.5.1� Timer Interrupt Service Routine (ISR)

	Timer services are supplied by a combination of interrupt- and task-level code. The Timer ISR is ...
	2.5.2� Timer Task

	The Timer task is closely linked to the operating system in that it is scheduled for execution as...
	The Timer task always runs at the highest priority (0). Thus when it is scheduled, it preempts an...
	2.5.3� Alarms

	The maximum number of alarms in the system is a configurable parameter. A task can own any number...
	When an alarm is created, the caller can specify a standard or special alarm type. The methods us...
	Less processing is required for a special alarm than for a standard alarm when it is started or c...
	In general, therefore, the majority of alarms in the system should be standard; however, for a li...
	A third alarm type, the task alarm, is used internally by the system. A task alarm is associated ...

	2.6� Resource Management
	Tasks and interrupt service routines might require temporary exclusive access to or possession of...
	The simplest resource is a single entity — it can be obtained (locked) or released (unlocked). A ...
	Each component of a resource is represented by a “resource token.” Each resource token is a queue...
	The maximum number of resources that can be created is configurable at system initialization. (An...
	After creating a resource, a task generally “stocks” the resource, by building and “releasing” (w...
	A task requests a resource by specifying (as an input parameter to the Request Resource system ca...
	In anticipation of the resource being unavailable, the requester can supply the address of a “res...
	If a resource carrier is supplied, and if no tokens are available, the carrier is linked to the R...
	When a resource token becomes available (on a Release Resource system call), the resource carrier...
	If no carrier messages are queued when a resource is released, the resource token is linked to th...

	3 System Calls
	Most requests for system services go through a single vector in the exception vector table, using...
	Before returning control to the task when a system call (including those accessed through separat...
	Each of the following sections describes the function of a system call, the C and assembly langua...
	3.1� Task-Related Calls
	This section describes the system calls that are related to the management of tasks:
	Tasks can be created as part of system initialization, reinitialization (see Section�3.6.1 on pag...
	After a task is executing, it can normally be preempted by a higher-priority task or by an interr...
	Tasks or interrupt service routines can use the Resume system call to schedule any task for execu...
	Unless a task is executing at the lowest priority in the system, it must periodically suspend its...
	In some cases, a task may no longer be required after it has performed the specific function for ...
	3.1.1� Create a Task (s_tcreat)

	Given the address of a task initialization structure, the Create Task system call dynamically cre...
	The TCB corresponding to the requested ID is allocated and initialized, and the task is added to ...
	Assembly Interface:
	Access: task only
	3.1.2� Delete Calling Task (s_tdelet)

	The Delete Task system call deactivates the calling task and frees the associated TCB. If task re...
	C Interface:
	Assembly Interface:
	Access: task only
	3.1.3� Disable Task Rescheduling (s_lock)

	The Lock Task system call disables task rescheduling, including time slicing. Until task reschedu...
	C Interface:
	Assembly Interface:
	Access: task only
	3.1.4� Enable Task Rescheduling (s_ulock)

	The Unlock Task system call enables task rescheduling. If a task makes a Suspend or Delete Task s...
	Assembly Interface:
	Access: task only
	3.1.5� Suspend Calling Task (s_susp)

	The Suspend system call suspends execution of the calling task until an event occurs that causes ...
	If the task does not supply an ECB address (in other words, the input parameter is zero), all eve...
	If task rescheduling is disabled, it is automatically re-enabled when a task suspends.
	If an ECB is supplied, and it contains the ID of an exchange queue that the task does not own, an...
	If an ECB is supplied, and it contains a nonzero alarm tick count, the alarm associated with the ...
	On return from suspension, the event code signifies the event that caused the task to be reschedu...
	Assembly Interface:
	Access: task only
	3.1.6� Resume a Task (s_resum)

	The Resume system call schedules the specified task for execution if it is currently executing or...
	An error is returned if the specified task ID is invalid; otherwise, the completion status is goo...
	Assembly Interface:
	Access: task or ISR

	3.2� Queue-Related Calls
	The system calls that are related to the management of exchange queues are as follows:
	An exchange queue can be created by a task with the Create Queue system call, which allocates a Q...
	After a queue has been created, tasks and interrupt service routines can add messages to it with ...
	Because it is often convenient to notify the owner of a queue when a message has been added, the ...
	If a queue is no longer required, the Delete Queue system call deallocates the queue ID and assoc...
	3.2.1� Create a Queue (s_qcreat)

	The Create Queue system call causes the QCB associated with the specified queue ID to be allocate...
	The caller must also specify the ID of a task that will become the “owner” of the queue. This tas...
	An error is returned if the queue is already allocated or if the task or queue ID is out of range...
	Assembly Interface:
	Access: task only
	3.2.2� Delete a Queue (s_qdelet)

	The Delete Queue system call frees the QCB associated with the specified queue ID.
	An error is returned and the QCB is not deallocated if the caller does not own the queue, if the ...
	Assembly Interface:
	Access: task only
	3.2.3� Post a Message to a Queue (s_post)

	The Post Message system call adds a message (a queue element) to the head or tail of the specifie...
	An error is returned if the specified queue is not currently allocated to any task or if the “thi...
	Assembly Interface:
	Access: task or ISR
	3.2.4� Post a Message and Resume Queue Owner (s_postr)

	The Post & Resume system call is identical to the Post Message call (Section�3.2.3 on page�46) ex...
	The completion status returned does not indicate whether the call actually caused the task to be ...
	Assembly Interface:
	Access: task or ISR
	3.2.5� Accept a Message from a Queue (s_accpt)

	The Accept Message system call removes a message from the head of the specified queue and returns...
	An error is returned if the queue ID is invalid or if the queue is empty.
	Assembly Interface:
	Access: task or ISR

	3.3� Resource-Related Calls
	The following system calls related to the management of resources are described in this section:
	A resource can be created by a task with the Create Resource system call, which allocates an RCB ...
	Tasks and interrupt service routines can then obtain resource tokens with Request Resource system...
	If a resource is no longer required, the Delete Resource system call deallocates the resource ID ...
	3.3.1� Create a Resource (s_rcreat)

	The Create a Resource system call causes allocation of the RCB associated with the specified reso...
	An error is returned if the resource is already allocated or if the resource ID is out of range. ...
	To initialize the resource, this call should be followed with one or more calls to Release Resour...
	Assembly Interface:
	Access: task only
	3.3.2� Delete a Resource (s_rdelet)

	The Delete Resource system call frees the RCB associated with the specified resource identificati...
	Assembly Interface:
	Access: task only
	3.3.3� Request a Resource (s_rreq)

	The Request Resource system call unlinks a resource token from the appropriate RCB (as specified ...
	The caller can optionally supply the address of a resource carrier message. The format of this me...
	When a resource becomes available (in other words, is released with a Release Resource system cal...
	Assembly Interface:
	Access: task or ISR
	3.3.4� Cancel a Resource Request (s_rcan)

	The Cancel Resource Request system call searches the queue of the appropriate RCB (as signified b...
	Note that the completion code in the returned carrier message should be checked to verify that th...
	3.3.5� Release a Resource (s_rrel)

	The Release Resource system call returns a resource token to the RCB associated with the specifie...
	If the RCB queue is empty or already contains one or more resource tokens, the released token is ...
	This call is used not only to release a previously allocated resource, but also by the creator of...

	3.4� Partition-Related Calls
	The following system calls are related to the management of partitions:
	By providing its address range and buffer size, a task can create a partition with the Create Par...
	After a partition has been created, tasks and interrupt service routines can obtain and release b...
	If a partition is no longer required, the Delete Partition system call deallocates the partition ...
	3.4.1� Create a Partition (s_pcreat)

	The Create Partition system call allocates and initializes the PCB associated with the specified ...
	An error is returned if the partition ID is already assigned, is out of range, or the size of the...
	The buffer size specified must include the size of the system buffer header (see Section�4.12 on ...
	If the partition size is not an even multiple of the buffer size, a number of bytes (smaller than...
	3.4.2� Delete a Partition (s_pdelet)

	The Delete Partition system call frees the PCB associated with the specified partition identifica...
	An error is returned and the partition is not deleted if any buffers are currently allocated (not...
	3.4.3� Request a Buffer (s_breq)

	The Request Buffer system call unlinks a system buffer from the free list of the specified partit...
	An error is returned if the partition is not allocated or if its free list is empty.
	3.4.4� Release a Buffer (s_brel)

	The Release Buffer system call returns a system buffer to the free list of its partition.
	An error is returned if the address of the buffer is out of range for the partition, if the parti...

	3.5� Alarm-Related Calls
	This section describes the system calls related to the management of standard and special alarms:
	A task can create an alarm using the Create Alarm system call, which allocates an ACB according t...
	After an alarm has been created, tasks and interrupt service routines can start the alarm, using ...
	When an alarm expires, the flag (if any) is set as specified by the mask, and the signal routine ...
	If an alarm is no longer required, the Delete Alarm system call deallocates the alarm ID and asso...
	3.5.1� Create an Alarm (s_acreat)

	The Create Alarm system call allocates and initializes the ACB associated with the specified alar...
	The address of a signal routine is an optional input parameter. This routine is called by the Tim...
	The environment of the signal routine is as follows:
	Create Alarm returns an error if the ACB is already assigned or the alarm ID is out of range. Val...
	3.5.2� Delete an Alarm (s_adelet)

	The Delete Alarm system call frees the ACB associated with the specified alarm identification. If...
	3.5.3� Set an Alarm (s_aset)

	The Set Alarm system call starts an alarm or adjusts the tick count in an alarm that is already r...
	For a standard alarm, the Timer task, when it executes, moves the ACB to the appropriate position...
	When the alarm ticks have expired, the Timer task unlinks the ACB from the standard or special al...
	3.5.4� Cancel an Alarm (s_acan)

	If the alarm associated with the specified alarm ID is running, the Cancel Alarm system call caus...
	If Cancel Alarm is called when the alarm is not running, no action is taken.

	3.6� Miscellaneous Calls
	This section describes the remaining system calls:
	A task or interrupt service routine can reinitialize the operating system using the �Initialize O...
	The Get System Address Table system call can be used by a task or interrupt service routine to ob...
	Interrupt service routines may complete their processing with a Return from ISR system call rathe...
	Because tasks execute in user state, they cannot directly modify the processor’s interrupt mask l...
	3.6.1� Initialize OS (s_osinit)

	Given the address of a table containing the configurable system parameters (see Section�4.9 on pa...
	This call does not return.
	3.6.2� Get System Address Table (s_getsat)

	The Get System Address Table system call returns the address of the system address table. This ta...
	See Section�4.9 on page�91 for the definition of the configuration table and Section�4.15 on page...
	3.6.3� Return from ISR (s_iret)

	An interrupt service routine may issue an ISR Return system call at the completion of its process...
	The ISR for the highest-priority interrupt in the system can execute an RTE directly if it has no...
	NOTE: Serial port ISRs operate at level 5 (7 being highest). The optional user extension to the T...
	3.6.4� Set Interrupt Level (s_iset)

	The Set Interrupt Level system call sets the interrupt priority mask value in the Motorola ColdFi...

	4 System Data Structures
	This chapter describes the data structures used to control system operation. Except where noted, ...
	The data structures are defined in C language format. The data type short is 16 bits. Pointers an...
	4.1� Task Control Block (TCB)
	The system maintains a 28-byte TCB for each configured task, which contains information related t...
	The t_state field can contain the following values:
	A TCB is linked to the appropriate singly linked dispatch queue (Section�4.8 on page�90) when the...
	When a task is preempted, its registers, including its status register and its program counter, a...
	User code must not modify any of the TCB fields.

	4.2� Queue Control Block (QCB)
	The system maintains a 20-byte QCB for each configured exchange queue. QCBs are arranged as an ar...
	The queue head and tail pointers are used to implement either a singly or doubly linked queue. Th...
	The address of the QCB is provided to the caller on return from the Create Queue system call. Und...

	4.3� Resource Control Block (RCB)
	The system maintains a 16-byte RCB for each configured resource. RCBs are arranged as an array of...
	The token/carrier head and tail pointers implement a singly linked queue. When the count is great...
	User code must not modify any of the fields of the RCB.

	4.4� Partition Control Block (PCB)
	The system maintains a 28-byte PCB for each configured partition. PCBs are arranged as an array o...
	The free list head and tail pointers implement a singly linked queue. The sb_nxte field of each b...
	When a partition is created during system initialization, all buffers are linked to the free list...
	User code must not modify any of the fields of the PCB.

	4.5� Alarm Control Block (ACB)
	The system maintains a 28-byte ACB for each configured alarm. ACBs are arranged as an array of st...
	The a_type field can contain the following values:
	The a_state field can contain the following values:
	An ACB is linked to the special alarm queue (Section�4.7) when it is started with a Set Alarm sys...
	Standard and task ACBs are moved to the standard alarm queue (see Section�4.6) from the special a...
	If the signal routine address is zero, the Timer task will not make a subroutine call when the al...
	While a standard or special alarm is in the idle state (not running), user code can modify the a_...

	4.6� Standard Alarm Queue
	The system implements a doubly linked standard alarm queue with a head and tail pointer, which mi...
	Because tick counts are relative, the Timer task decrements only the tick count in the ACB at the...
	User code must not modify the standard alarm queue head and tail pointers.

	4.7� Special Alarm Queue
	The system implements a singly linked special alarm queue with a head and tail pointer, which can...
	User code must not modify the special alarm queue head and tail pointers.

	4.8� Dispatch Queues
	The system maintains a singly linked dispatch queue for each task priority. (The number of priori...
	The system selects the next task to be dispatched by checking each dispatch queue in order of pri...
	User code must not modify the dispatch queue head and tail pointers.

	4.9� Configuration Table
	When the operating system is initialized at startup, and when it is re-initialized with the Initi...
	The system configuration table consists of a list of parameters, described by the 20-byte �CFG_TY...
	The final element in the array cft must specify a task ID (ti_id) of zero to terminate the list. ...
	The format of the task initialization structure is defined in Section�4.10. The last task initial...

	4.10� Task Initialization Structure (TIS)
	The 16-byte TIS provides the system with the information necessary to create a task. The address ...
	Each task initialization structure contains the following fields:

	4.11� Event Control Block (ECB)
	An ECB can be created by a task and passed as input to the Suspend system call to specify the con...
	The ECB is a structure containing four fixed-length fields totaling eight bytes, and a variable-l...
	If e_tick is set to zero, no alarm is set. The e_resum flag identifies whether the suspended task...
	A task can own any number of exchange queues, each of which is identified with a queue identifica...

	4.12� System Buffer Header (SBH)
	Buffers allocated from partitions, and also elements posted to exchange queues, begin with a stan...
	Only certain fields of the buffer header are required or created by the system, and only during c...
	Tasks are required to maintain (or create) only certain fields of the system buffer header in a b...
	1. When a buffer is released to a partition, the sb_thse and sb_pid fields must be valid.
	2. When a queue element is posted to a singly linked queue, the sb_thse field must be valid, and ...
	3. When a queue element is posted to a doubly linked queue, the sb_thse field must be valid, and ...

	4.13� Resource Carrier Message
	A task can create a resource carrier message and include its address as an optional input paramet...
	The 36-byte resource carrier message is a queue element, and therefore begins with a standard sys...
	When a carrier message is created, the return queue ID must be specified, and the resume flag mus...
	Before posting the carrier message to the specified queue, the system sets the completion code. I...
	The rc_cmp field can contain the following values:

	4.14� Stack Format
	When a task is suspended or is preempted, the 68 bytes at the top of the current user task stack ...

	4.15� Global System Table (GST)
	The 64-longword (256-byte) GST contains various information that might be useful to application t...
	The clock tick count is incremented by the clock interrupt service routine on each tick. The idle...

	A Debugging Aids
	This appendix describes the facilities that have been incorporated into the operating system to a...
	A.1� Global System Table
	The GST is defined in Section�4.15 on page�103. Several of the fields in the table might be of in...
	During normal system operation the debug code in the

gs_debug

 field signifies the level ...
	When a consistency check fails, the system stores a code identifying the error in the

gs_debug...
	When an input parameter check fails in a system call, an error is returned, as defined for each s...
	Table A–1:� System Errors
	s_qdelet

	0x02
	queue is not empty
	s_accpt

	0xFF
	queue is empty
	s_rreq

	0xFF
	no resource tokens available
	s_pdelet

	0x02
	one or more buffers currently allocated
	s_breq

	0xFF
	no buffers available

	Input parameter and consistency checks are conditionally assembled in order to improve system per...
	A.1.1� Panic Codes

	When consistency checking is enabled and an error is detected, the system routine detecting the e...
	As part of consistency checking, when a partition is created, the

sb_pree

 field of each buf...

	A.2� System Variables
	System variables that might help you determine the state of a task, queue, alarm, partition, or r...
	A.2.1� Pointers to Control Structures

	Each variable in Table�A–2

 contains the address of the first control structure of its kind,, b...
	Table A–2:� Control Structures
	0
	tcbs
	L
	Contains the address of the first TCB
	(TCB length = 28 bytes)
	4
	qcbs
	L
	Contains the address of the first QCB
	(QCB length = 20 bytes)
	8
	acbs
	L
	Contains the address of the first regular
	(standard or special) ACB
	(ACB length = 28 bytes)
	C
	tacbs
	L
	Contains the address of the first task ACB
	(ACB length = 28 bytes)
	10
	pcbs
	L
	Contains the address of the first PCB
	(PCB length = 28 bytes)
	14
	rcbs
	L
	Contains the address of the first RCB
	(RCB length = 16 bytes)
	18

	L
	(unused)
	1C

	L
	(unused)
	A.2.2� Alarm Queues

	Table�A–3

 shows the alarm queues, beginning at offset 2016 past the GST.
	Table A–3:� Alarm Queues
	20
	tq_head
	L
	Contains the address of the first ACB on the standard alarm queue, or zero if the queue is empty
	24
	tq_tail
	L
	Contains the address of the last ACB on the standard alarm queue, and is undefined if the queue i...
	28
	aq_head
	L
	Contains the address of the first ACB on the special alarm queue, or zero if the queue is empty
	2C
	aq_tail
	L
	Contains the address of the last ACB on the special alarm queue, and is undefined if the queue is...
	A.2.3� Task Execution Variables

	Table�A–4 shows the task execution data, starting at offset 3016 past the GST. To determine the d...
	Table A–4:� Task Execution Variables
	30
	dq_heads
	L
	Contains address of the first dispatch queue head pointer
	34
	dq_tails
	L
	Contains address of the first dispatch queue tail pointer
	38
	curtsk
	L
	Contains the TCB address of the currently executing task
	3C
	curpri
	L
	Contains the priority of the currently executing task
	40
	tlock
	L
	Equal to zero if task rescheduling is enabled, equal to one if task rescheduling is disabled
	44
	tswitch
	L
	Bit 15 is set if a task switch is pending; bit 0 (lowest) is set if no state save is required at ...

	B Data Structure Field Offsets
	The following tables show more precise definitions of the data structures defined with C structur...
	The number of dispatch queues (Table�B–8 on page�120

) is dependent on the number of configured...
	The configuration table, defined in Table�B–9 on page�120

, includes a variable number of TISs ...
	The event control block, defined in Table�B–11 on page�121

, includes a variable-length list of...
	All other data structures are of fixed length. �����������������������������
	Table B–1:� Task Control Block (TCB)
	0
	t_

next
	4
	4
	t_id

	2
	6
	t_

pri
	2
	8
	t_

slice
	2
	A
	t_

state
	2
	C
	t_

stack
	4
	10
	t_

ecb
	4
	14
	t_

acb
	4
	18
	t_

event
	4
	Table B–2:� Queue Control Block (QCB)

	0
	q_

head
	4
	4
	q_

tail
	4
	8
	

q_owner
	4
	C
	

q_

count
	2
	E
	

q_type
	2
	10
	

q_

id
	2
	12
	

q_filler
	2
	Table B–3:� Resource Control Block (RCB)

	0
	r_

head
	4
	4
	r_

tail
	4
	8
	

r_

type
	2
	A
	

r_

count
	2
	C
	

r_

state
	2
	E
	

r_

id
	2
	Table B–4:� Partition Control Block (PCB)

	0
	p_

head
	4
	4
	p_

tail
	4
	8
	

p_

start
	

4
	C
	

p_

end
	4
	10
	

p_

bsize
	4
	14
	

p_

total
	

2
	16
	p_

count
	2
	18
	

p_

id
	2
	1A
	

p_filler
	2
	Table B–5:� Alarm Control Block (ACB)

	0
	

a_

flink
	

4
	4
	a_

blink
	4
	8
	a_

sigad
	4
	C
	a_

flagad
	

4
	0
	

a_

mask
	4
	14
	

a_

type
	2
	16
	

a_

tick
	

2
	18
	a_

state
	2
	1A
	a_

id
	2
	Table B–6:� Standard Alarm Queue

	0
	

tq_

head
	

4
	4
	

tq_

tail
	4
	Table B–7:� Special Alarm Queue

	0
	aq_

head
	4
	4
	aq_

tail
	

4
	Table B–8:� Dispatch Queues

	0
	dq_

head 0
	4
	4
	dq_

head 1
	4
	8
	

dq_

head 2
	4
	C
	

dq_

head 3
	4
	10
	

 (end_

marker)
	4
	14
	dq_

tail 0
	4
	18
	

dq_

tail 1
	4
	1C
	dq_

tail 2
	4
	20
	dq_

tail 3
	4
	Table B–9:� Configuration Table

	0
	

cf_

ntask
	2
	2
	cf_

nprior
	2
	4
	

cf_

nque
	2
	6
	

cf_

nalarm
	2
	8
	cf_

npart
	2
	A
	cf_

nresrc
	2
	C
	

cf_

ltick
	2
	E
	cf_

lslice
	2
	10
	cf_

cisr
	4
	14
	TIS 1
	10
	24
	TIS 2
	10
	34
	(zero)
	2
	Table B–10:� Task Initialization Structure (TIS)

	0
	

ti_

id
	

2
	2
	ti_

pri
	2
	4
	

ti_

start
	4
	8
	ti_

usp
	4
	C
	

ti_

tsen
	

2
	E
	ti_filler
	2
	Table B–11:� Event Control Block (ECB)

	0
	

e_

tick
	2
	2
	

e_

resum
	

2
	4
	

e_

cps
	2
	6
	e_

filler
	2
	8
	

QID 1
	2
	A
	QID 2
	2
	C
	(zero)
	2
	Table B–12:� System Buffer Header (SBH)

	0
	

sb_

nxte
	4
	4
	

sb_

pree
	4
	8
	

sb_

thse
	4
	C
	sb_

nxtb
	4
	10
	

sb_

pid
	2
	12
	

sb_

dlen
	2
	14
	

sb_

disp
	2
	16
	sb_

dmod
	2
	Table B–13:� Resource Carrier Message

	0
	

SBH
	18
	18
	rc_

qid
	2
	1A
	rc_

resum
	2
	1C
	

rc_

pri
	2
	1E
	

rc_

comp
	2

	20
	

rc_

token
	4
	Table B–14:� Global System Table (GST)

	0
	

gs_

init
	4
	4
	

gs_

ticks
	4
	8
	

gs_

idle
	4
	C
	gs_

ramend
	4
	10
	gs_

version
	4
	14
	gs_

debug
	4
	14
	gs_

reserved
	4
	14
	gs_

xerr
	4
	14
	gs_

ports
	4
	14
	gs_

memsiz
	4
	14
	gs_

memend
	4
	18
	

gs_

unused
	D4

	C System Call Summaries
	This appendix provides quick-reference tables showing summaries of the system call parameters for...
	Table C–1:� C Interface System Call Summary
	Create a task
	s_

tcreat
	(tis)
	Delete calling task

	s_

tdelet
	()
	Disable task rescheduling

	s_

lock
	()
	Enable task rescheduling

	s_

ulock
	()
	Suspend calling task

	s_

susp
	(ecb, event_

code)
	Resume a task

	s_

resum
	(task_

id)
	Create a queue
	s_

qcreat
	(queue_

id, q_

type, task_

id, qcb)
	Delete a queue
	s_

qdelet
	(queue_

id)
	Post a message to a queue
	s_

post
	(queue_

id, head_

tail, message)
	Post a message and resume queue owner
	s_

postr
	(queue_

id, head_

tail, message)
	Accept a message from a queue
	s_

accpt
	(queue_

id, message)
	Create a resource
	s_

rcreat
	(res_

id, res_

type)
	Delete a resource
	s_

rdelet
	(res_

id, queue_

id)
	Request a resource
	s_

rreq
	(res_

id, carrier, token)
	Cancel a resource request
	s_

rcan
	(res_

id, carrier)
	Release a resource
	s_

rrel
	(res_

id, token)
	Create a partition
	s_

pcreat
	(part_

id, buffer_

size, start_

addr,�end_

addr, pcb)
	Delete a partition
	s_

pdelet
	(part_

id)
	Request a buffer
	s_

breq
	(part_

id, buffer)
	Release a buffer
	s_

brel
	(buffer)
	Create an alarm
	s_

acreat
	(alarm_

id, alarm_

type, mask, signal, flag, acb)
	Delete an alarm
	s_

adele
	(alarm_

id)
	Set an alarm
	s_

aset
	(alarm_

id, ticks)
	Cancel an alarm
	s_

acan
	(alarm_

id)
	Initialize OS
	s_

osinit
	(config)
	Get system address table
	s_

getsat
	()
	Return from ISR
	s_

iret
	()
	Set interrupt level
	s_

iset
	(mask)
	Table C–2:� Assembly Interface System Call Summary

	Operation
	Assembly System Call
	I/O
	Register
	D0
	D1
	D2
	D3
	A0
	A1
	Create a task
	input
	0x00
	tis

	Delete calling task
	input
	0x01
	Disable task rescheduling
	input
	0x02
	Enable task rescheduling
	input
	0x03
	Suspend calling task
	input
	0x04
	ecb
	output
	event
	Resume a task
	input
	0x06
	task_

id
	Create a queue
	input
	0x07
	que_

id
	type
	tsk_

id
	output
	qcb
	Delete a queue
	input
	0x08
	que_

id
	Post message to queue
	input
	0x09
	que_

id
	hd_

tail
	msg
	Post message and resume queue owner
	input
	0x0A
	que_

id
	hd_

tail
	msg
	Accept message from queue
	input
	0x0B
	que_

id
	output
	msg
	Create a resource
	input
	0x0C
	res_

id
	type
	Delete a resource
	input
	0x0D
	res_

id
	que_

id
	Request a resource
	input
	0x0E
	res_

id
	carrier
	output
	token
	Cancel resource request
	input
	0x0F
	res_

id
	carrier
	Release a resource
	input
	0x10
	res_

id
	token
	Create a partition
	input
	0x11
	par_

id
	size
	start
	end
	Delete a partition
	input
	0x12
	par_

id
	Request a buffer
	input
	0x13
	par_

id
	output
	buffer
	Release a buffer
	input
	0x14
	buffer
	Create an alarm
	input
	0x15
	alr_

id
	type
	mask
	signal
	flag
	output
	acb
	Delete an alarm
	input
	0x16
	alr_

id
	Set an alarm
	input
	0x17
	alr_

id
	ticks
	Cancel an alarm
	input
	0x18
	alr_

id
	Initialize OS
	input
	0x19
	config
	Get system address table

	input
	0x1A
	output
	table
	Return from ISR
	-- TRAP #1 --
	Set interrupt level
	input
	new_

mask
	-- TRAP #2 --
	output
	old_

mask

	D Task Scheduling Examples
	This appendix provides some examples of task scheduling. For these examples, assume that the syst...
	A
	1
	disabled
	B
	2
	disabled
	C
	2
	disabled

	Example 1
	1. Task B is currently executing and no tasks are scheduled for execution.
	2. Task B makes a Resume system call to schedule task C. Task C is added to the dispatch queue, b...
	3. Task B suspends and task C is dispatched.

	Example 2
	2. Task B makes a Post & Resume system call to a queue owned by task A, causing task A to be sche...
	3. Task A suspends and task C is dispatched.
	4. Task C suspends and task B is dispatched, continuing execution at the return from the Post & R...

	Example 3
	2. An interrupt occurs before task B suspends. The interrupt service routine (ISR) makes a Resume...
	3. During task A’s execution, it makes a Post & Resume call to task B’s queue. Task B is already ...
	4. When task A suspends, task B is dispatched, continuing execution at the point of interrupt (St...
	5. Not realizing that the interrupt and subsequent preemption occurred, task B proceeds to suspen...
	6. Task B, having been rescheduled during dispatch (Step�4) is dispatched again and finds the que...

	Glossary of Acronyms
	ACB
	API
	ECB
	FIFO
	ICP
	ISR
	GST
	LAN
	LIFO
	PCB
	QCB
	RCB
	RTE
	SBH
	SNMP
	TCB
	TCP/IP
	TIS
	WAN

	Index

